Region description using scalable circumferential filters

In this paper, we present a technique to describe local image features using scalable circumferential filters. Region description is the basic technique for many computer vision applications such as visual tracking, matching, and object recognition. In the first part of this paper, we present an elliptical cylinder projection method to geometrically normalize the ellipse regions to circular. In the second part of the paper, a set of scalable circumferential filters are proposed to extraction the distinctive feature of each region. Unlike traditional image filters, the shape of the proposed circumferential filters is fan and is scalable with its distance to the region's center. Experiments on typical images exhibit the robustness of the proposed method. Extensively quantitative evaluation and comparison demonstrate that the proposed method outperforms state-of-the-art method.

[1]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[2]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[3]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[4]  Norbert Krüger,et al.  Object Recognition with a Sparse and Autonomously Learned Representation Based on Banana Wavelets , 1996 .

[5]  Ali Shokoufandeh,et al.  View-based object recognition using saliency maps , 1999, Image Vis. Comput..

[6]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Cordelia Schmid,et al.  Coloring Local Feature Extraction , 2006, ECCV.

[8]  Andrew Zisserman,et al.  Multi-view Matching for Unordered Image Sets, or "How Do I Organize My Holiday Snaps?" , 2002, ECCV.

[9]  Josef Kittler,et al.  On local linear transform and Gabor filter representation of texture , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[10]  C. A. Murthy,et al.  Distinct Multicolored Region Descriptors for Object Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[12]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Dennis Gabor,et al.  Theory of communication , 1946 .

[14]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Gustavo Carneiro,et al.  Phase-Based Local Features , 2002, ECCV.

[16]  Azriel Rosenfeld,et al.  A Comparative Study of Texture Measures for Terrain Classification , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[18]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[19]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[20]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Andrew Zisserman,et al.  An Affine Invariant Salient Region Detector , 2004, ECCV.