Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites

Abstract Surface functionalization of multiwalled carbon nanotubes is carried out by acid treatment followed by reaction with multifunctional silane, 3-aminopropyltriethoxysilane. The chemical interaction of silane with the oxidized nanotube surface is confirmed by Fourier transform infrared spectroscopy (FT-IR). Energy dispersive X-ray analysis (EDX) studies also indicate the presence of silane on the surface of the carbon nanotubes. X-ray diffraction reveals the change in the crystalline phases due to surface functionalization. Raman spectroscopy of the acid treated CNT further corroborates the formation of surface defects due to the introduction of carboxyl groups. Thermogravimetric analysis of the functionalized CNT exhibits a multiple peaks in the temperature range of 200–650 °C that corresponds to the degradation of chemically grafted aminosilane on the CNT surface. The influence of silane functionalized carbon nanotubes on the rheometric and mechanical properties of natural rubber vulcanizates is investigated. Rheometric properties like scorch time and optimum cure time increases. Modulus and tensile strength increase due to higher polymer-filler interaction between the carbon nanotube and NR vulcanizates.

[1]  T. Ishii,et al.  The Application of Differential Thermal Analysis to the Study of Reaction Kinetics , 1967 .

[2]  A. G. S. Filho,et al.  Charge transfer effects in acid treated single-wall carbon nanotubes , 2005 .

[3]  J. Mays,et al.  Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization. , 2004, Angewandte Chemie.

[4]  P. Eklund,et al.  Vibrational Modes of Carbon Nanotubes , 1996 .

[5]  A. Bhowmick,et al.  Influence of novel electron beam modified surface treated dual phase filler on rheometric and mechanical properties of styrene butadiene rubber vulcanizates , 2003 .

[6]  Frank T. Fisher,et al.  Amino-Functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems , 2005, Chemistry of Materials.

[7]  P. Ajayan,et al.  Large-scale synthesis of carbon nanotubes , 1992, Nature.

[8]  C. Ko,et al.  Highly efficient microwave-assisted purification of multiwalled Carbon nanotubes , 2004 .

[9]  Rodney S. Ruoff,et al.  Mechanical and thermal properties of carbon nanotubes , 1995 .

[10]  R. Saito,et al.  Radial breathing modes of multiwalled carbon nanotubes , 2002 .

[11]  J. Nagy,et al.  Chemical functionalization by a fluorinated trichlorosilane of multi-walled carbon nanotubes , 2004 .

[12]  J. Nagy,et al.  Surface modifications of carbon nanotube/polyacrylonitrile composite films by proton beams , 2003 .

[13]  Lawrence F. Allard,et al.  Functionalization of Carbon Nanotubes with Polystyrene , 2002 .

[14]  J. Sloan,et al.  Structural studies of multiwall carbon nanotubes by neutron diffraction , 1999 .

[15]  Karl Schulte,et al.  Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites , 2003 .

[16]  K. Lau Interfacial bonding characteristics of nanotube/polymer composites , 2003 .

[17]  K. Jacob,et al.  Carbon nanotubes as Raman sensors of vulcanization in natural rubber , 2006 .

[18]  Jang‐Kyo Kim,et al.  Functionalization of carbon nanotubes using a silane coupling agent , 2006 .

[19]  P. Papakonstantinou,et al.  Oxidative functionalization of carbon nanotubes in atmospheric pressure filamentary dielectric barrier discharge (APDBD) , 2005 .

[20]  H. Wagner,et al.  Mechanical properties of carbon nanoparticle-reinforced elastomers , 2003 .

[21]  Dong Yang,et al.  Preparation, characterization and application of magnetic silica nanoparticle functionalized multi-walled carbon nanotubes. , 2005, Chemical communications.

[22]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[23]  V. M. Castaño,et al.  Chemical functionalization of carbon nanotubes through an organosilane , 2002 .

[24]  Neumann,et al.  X-ray powder diffraction from carbon nanotubes and nanoparticles. , 1995, Physical review. B, Condensed matter.

[25]  David Hui,et al.  On the effective elastic moduli of carbon nanotubes for nanocomposite structures , 2004 .

[26]  F. Kokai,et al.  Modification of carbon nanotubes by laser ablation , 2005 .

[27]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[28]  E. Bekyarova,et al.  Influence of the zeta potential on the dispersability and purification of single-walled carbon nanotubes. , 2005, The journal of physical chemistry. B.

[29]  J. Šesták,et al.  Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures , 1971 .

[30]  A. I. Leonov,et al.  A Kinetic-Model for Sulfur Accelerated Vulcanization of a Natural-Rubber Compound , 1996 .

[31]  Neri Alves,et al.  Conductive composites of natural rubber and carbon black for pressure sensors , 2003 .

[32]  X. Lou,et al.  Grafting of alkoxyamine end-capped (co)polymers onto multi-walled carbon nanotubes , 2004 .

[33]  T. Belin,et al.  Characterization methods of carbon nanotubes : a review. , 2005 .

[34]  M. Terrones,et al.  Novel nanotubes and encapsulated nanowires , 1998 .

[35]  P. Eklund,et al.  Vibrational modes of carbon nanotubes; Spectroscopy and theory , 1995 .

[36]  Liangchi Zhang,et al.  The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix , 2004 .

[37]  Farrington Daniels,et al.  The Application of Differential Thermal Analysis to the Study of Reaction Kinetics1 , 1957 .