Femtosecond exciton dynamics in WSe2 optical waveguides

Van-der Waals (vdW) atomically layered crystals can act as optical waveguides over a broad range of the electromagnetic spectrum ranging from Terahertz to visible. Unlike common Si-based waveguides, vdW semiconductors host strong excitonic resonances that may be controlled using non-thermal stimuli including electrostatic gating and photoexcitation. Here, we utilize waveguide modes to examine photo-induced changes of excitons in the prototypical vdW semiconductor, WSe2, prompted by femtosecond light pulses. Using time-resolved scanning near-field optical microscopy we visualize the electric field profiles of waveguide modes in real space and time and extract the temporal evolution of the optical constants following femtosecond photoexcitation. By monitoring the phase velocity of the waveguide modes, we detect incoherent A-exciton bleaching along with a coherent optical Stark shift in WSe2. The authors use time-resolved scanning near-field optical microscopy to probe the ultrafast excitonic processes and their impact on waveguide operation in transition metal dichalcogenide crystals. They observe significant modulation of the complex index by monitoring waveguide modes on the fs time scale, and identify both coherent and incoherent manipulations of WSe2 excitonic resonances.

[1]  M. Lipson,et al.  How lasing happens in CsPbBr3 perovskite nanowires , 2019, Nature Communications.

[2]  F. Keilmann,et al.  Artifact free time resolved near-field spectroscopy , 2017 .

[3]  A. Chernikov,et al.  Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2. , 2017, Nano letters.

[4]  K. Jacobsen,et al.  The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals , 2018, 2D Materials.

[5]  Fabian Mooshammer,et al.  Femtosecond photo-switching of interface polaritons in black phosphorus heterostructures. , 2017, Nature nanotechnology.

[6]  D. Mandrus,et al.  Imaging exciton–polariton transport in MoSe2 waveguides , 2017, Nature Photonics.

[7]  D. Basov,et al.  Adiabatic Amplification of Plasmons and Demons in 2D Systems. , 2016, Physical review letters.

[8]  W. Y. Liang Optical anisotropy in layer compounds , 1973 .

[9]  Thomas Olsen,et al.  Reply to comment on ‘The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals’ , 2019, 2D Materials.

[10]  Á. Rubio,et al.  Cavity Control of Excitons in Two-Dimensional Materials , 2018, Nano letters.

[11]  Alexey Chernikov,et al.  Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , Mo S e 2 , WS 2 , and WS e 2 , 2014 .

[12]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  M. Raschke,et al.  Nano-optical imaging and spectroscopy of order, phases, and domains in complex solids , 2012 .

[14]  Tony F. Heinz,et al.  Optical manipulation of valley pseudospin , 2016, Nature Physics.

[15]  C. Gies,et al.  Influence of excited carriers on the optical and electronic properties of MoS₂. , 2014, Nano letters.

[16]  A. Cavalleri,et al.  Light-induced anomalous Hall effect in graphene , 2018, Nature physics.

[17]  Jae Hyung Park,et al.  Ultrafast Nanoimaging of the Photoinduced Phase Transition Dynamics in VO2. , 2016, Nano letters.

[18]  Zhipei Sun,et al.  Probing optical anisotropy of nanometer-thin van der waals microcrystals by near-field imaging , 2017, Nature Communications.

[19]  F. Guinea,et al.  Polaritons in layered two-dimensional materials. , 2016, Nature materials.

[20]  Alexey Chernikov,et al.  Electrical Tuning of Exciton Binding Energies in Monolayer WS_{2}. , 2015, Physical review letters.

[21]  Timothy C. Berkelbach,et al.  Excitons in atomically thin transition-metal dichalcogenides , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[22]  D. Johnston,et al.  The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides , 2010, 1005.4392.

[23]  Haowei Peng,et al.  Giant Gating Tunability of Optical Refractive Index in Transition Metal Dichalcogenide Monolayers. , 2017, Nano letters.

[24]  Xiaodong Xu,et al.  Optical generation of high carrier densities in 2D semiconductor heterobilayers , 2019, Science Advances.

[25]  D. N. Basov,et al.  Polaritons in van der Waals materials , 2016, Science.

[26]  V. Kravets,et al.  Measurements of electrically tunable refractive index of MoS2 monolayer and its usage in optical modulators , 2019, npj 2D Materials and Applications.

[27]  Jaap I. Dijkhuis,et al.  Ultrafast screening and carrier dynamics in ZnO: Theory and experiment , 2010, 1012.3600.

[28]  Chan-Shan Yang,et al.  Biexcitonic optical Stark effects in monolayer molybdenum diselenide , 2018, Nature Physics.

[29]  L. Sorba,et al.  Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution , 2014 .

[30]  A. Westphal,et al.  Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants , 2013, 1308.1784.

[31]  T. Heinz,et al.  Population inversion and giant bandgap renormalization in atomically thin WS2 layers , 2015, Nature Photonics.

[32]  Mengkun Liu,et al.  Tunable Modal Birefringence in a Low‐Loss Van Der Waals Waveguide , 2019, Advanced materials.

[33]  R. Johnsen,et al.  Theory and Experiment , 2010 .

[34]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[35]  M. Goldflam,et al.  Efficiency of Launching Highly Confined Polaritons by Infrared Light Incident on a Hyperbolic Material. , 2017, Nano letters.

[36]  J. Shan,et al.  Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides , 2016, Nature Photonics.

[37]  A. Knorr,et al.  Enhancement of Exciton-Phonon Scattering from Monolayer to Bilayer WS2. , 2018, Nano letters.

[38]  F. Rana,et al.  Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. , 2014, Nano letters.

[39]  Jing Kong,et al.  Valley-selective optical Stark effect in monolayer WS2. , 2014, Nature materials.

[40]  K. Jacobsen,et al.  Real-space grid implementation of the projector augmented wave method , 2004, cond-mat/0411218.

[41]  A. H. Castro Neto,et al.  Gate-tuning of graphene plasmons revealed by infrared nano-imaging , 2012, Nature.

[42]  M. Lukin,et al.  Large Excitonic Reflectivity of Monolayer MoSe_{2} Encapsulated in Hexagonal Boron Nitride. , 2018, Physical review letters.

[43]  C. N. Lau,et al.  Ultrafast and nanoscale plasmonic phenomena in exfoliated graphene revealed by infrared pump-probe nanoscopy. , 2014, Nano letters.

[44]  B. Chakraborty,et al.  Control of Strong Light-Matter Interaction in Monolayer WS2 through Electric Field Gating. , 2018, Nano letters.

[45]  L. Balicas,et al.  Approaching the Intrinsic Limit in Transition Metal Diselenides via Point Defect Control. , 2019, Nano letters.

[46]  M. Mrejen,et al.  Transient exciton-polariton dynamics in WSe2 by ultrafast near-field imaging , 2019, Science Advances.

[47]  H. Hübener,et al.  Floquet analysis of excitations in materials , 2019, Journal of Physics: Materials.

[48]  L. Molenkamp,et al.  Ultrafast nonlocal collective dynamics of Kane plasmon-polaritons in a narrow-gap semiconductor , 2019, Science Advances.

[49]  T. Devereaux,et al.  All-optical materials design of chiral edge modes in transition-metal dichalcogenides , 2016, Nature Communications.

[50]  T. Heinz,et al.  Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide. , 2014, Nano letters.