Synthesis of uniform α-Si3N4 nanospheres by RF induction thermal plasma and their application in high thermal conductive nanocomposites.

In this paper, single-crystalline α-Si3N4 nanospheres with uniform size of ∼50 nm are successfully synthesized by using a radio frequency (RF) thermal plasma system in a one-step and continuous way. All Si3N4 nanoparticles present nearly perfect spherical shape with a narrow size distribution, and the diameter is well-controlled by changing the feeding rate. Compact Si3N4/PR (PR = phenolic resin) composites with high thermal conductivity, excellent temperature stability, low dielectric loss tangent, and enhanced breakdown strength are obtained by incorporating the as-synthesized Si3N4 nanospheres. These enhanced properties are the results of good compatibility and strong interfacial adhesion between compact Si3N4 nanospheres and polymer matrix, as large amount of Si3N4 nanospheres can uniformly disperse in the polymer matrix and form thermal conductive networks for diffusion of heat flow.

[1]  Xueqin Zhang,et al.  Enhanced dielectric properties of amino-modified-CNT/polyimide composite films with a sandwich structure , 2014 .

[2]  Ketan S Khare,et al.  Effect of carbon nanotube functionalization on mechanical and thermal properties of cross-linked epoxy-carbon nanotube nanocomposites: role of strengthening the interfacial interactions. , 2014, ACS applied materials & interfaces.

[3]  N. Khashab,et al.  Compositing polyetherimide with polyfluorene wrapped carbon nanotubes for enhanced interfacial interaction and conductivity. , 2014, ACS applied materials & interfaces.

[4]  Shuhui Yu,et al.  Nano Ag-deposited BaTiO3 hybrid particles as fillers for polymeric dielectric composites: toward high dielectric constant and suppressed loss. , 2014, ACS applied materials & interfaces.

[5]  Hongxia Yan,et al.  Nano-Si3N4/epoxidized silane/cyanate ester composites for electronic packaging , 2013, Polymer Bulletin.

[6]  Xingyi Huang,et al.  Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. , 2013, Nanoscale.

[7]  C. Zhi,et al.  Polyhedral Oligosilsesquioxane‐Modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity , 2013 .

[8]  C. Zhi,et al.  Temperature-dependent electrical property transition of graphene oxide paper , 2012, Nanotechnology.

[9]  Zhiping Luo,et al.  Polyaniline stabilized magnetite nanoparticle reinforced epoxy nanocomposites. , 2012, ACS applied materials & interfaces.

[10]  Y. Takezawa,et al.  Study on high thermal conductivity of mesogenic epoxy resin with spherulite structure , 2012 .

[11]  P. Jiang,et al.  Influence of interface structure on dielectric properties of epoxy/alumina nanocomposites , 2012, Macromolecular Research.

[12]  Qiuyu Zhang,et al.  Thermal conductivity epoxy resin composites filled with boron nitride , 2012 .

[13]  Lin Zhang,et al.  Dielectric characteristics of CaCu3Ti4O12/P(VDF-TrFE) nanocomposites , 2012 .

[14]  Hilmar Koerner,et al.  Nanolaminates: increasing dielectric breakdown strength of composites. , 2012, ACS applied materials & interfaces.

[15]  Shuhui Yu,et al.  Electrical modulus analysis on the Ni/CCTO/PVDF system near the percolation threshold , 2011 .

[16]  Xingyi Huang,et al.  Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. , 2011, ACS applied materials & interfaces.

[17]  P.H.F. Morshuis,et al.  Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix , 2011 .

[18]  K. Goodson,et al.  Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. , 2011, ACS nano.

[19]  C. Schulz,et al.  Plasma synthesis of nanostructures for improved thermoelectric properties , 2011 .

[20]  M. Meyyappan Plasma nanotechnology: past, present and future , 2011 .

[21]  A. Murphy,et al.  Thermal plasmas for nanofabrication , 2011 .

[22]  Xingyi Huang,et al.  Electrical and thermophysical properties of epoxy/aluminum nitride nanocomposites: Effects of nanoparticle surface modification , 2010 .

[23]  Xiang-Yun Guo,et al.  Temperature-controlled synthesis of Si3N4 nanomaterials via direct nitridation of Si powders , 2010 .

[24]  Guangsheng Wang Enhanced dielectric properties of three-phase-percolative composites based on thermoplastic-ceramic matrix (BaTiO3 + PVDF) and ZnO radial nanostructures. , 2010, ACS applied materials & interfaces.

[25]  D. Xiong,et al.  Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler , 2010 .

[26]  C. Zhi,et al.  Alignment of Boron Nitride Nanotubes in Polymeric Composite Films for Thermal Conductivity Improvement , 2010 .

[27]  Ayse Aytac,et al.  Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites , 2010 .

[28]  N. Jiang,et al.  Study on the pyrolysis of phenol-formaldehyde (PF) resin and modified PF resin , 2009 .

[29]  Ming-Jen Pan,et al.  High energy density nanocomposites based on surface-modified BaTiO(3) and a ferroelectric polymer. , 2009, ACS nano.

[30]  Tao Ai,et al.  A novel fiber-reinforced polyethylene composite with added silicon nitride particles for enhanced thermal conductivity , 2009 .

[31]  Yuzuru Shimazaki,et al.  Highly thermoconductive polymer nanocomposite with a nanoporous alpha-alumina sheet. , 2009, ACS applied materials & interfaces.

[32]  Yangfei Chen,et al.  A novel thermal degradation mechanism of phenol–formaldehyde type resins , 2008 .

[33]  H. Liem,et al.  Enhanced thermal conductivity of boron nitride epoxy‐matrix composite through multi‐modal particle size mixing , 2007 .

[34]  Shuhua Qi,et al.  Thermal conductivity of boron nitride reinforced polyethylene composites , 2007 .

[35]  L. Schadler,et al.  Designed Interfaces in Polymer Nanocomposites: A Fundamental Viewpoint , 2007 .

[36]  Yi Yin,et al.  Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/ Electroactive-Polymer Nanocomposites† , 2007 .

[37]  Shuhua Qi,et al.  Thermally conductive silicone rubber reinforced with boron nitride particle , 2007 .

[38]  Xin Zhou,et al.  A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed , 2006, Science.

[39]  Jae Ik Lee,et al.  Enhanced thermal conductivity of polymer composites filled with hybrid filler , 2006 .

[40]  Jin Yu,et al.  Comparative study of thermally conductive fillers in underfill for the electronic components , 2005 .

[41]  A. Beroual,et al.  Influences of degree of curing and presence of inorganic fillers on the ultimate electrical properties of epoxy-based composites: experiment and simulation , 2005 .

[42]  P. Supancic,et al.  Thermal Conductivity of Platelet‐Filled Polymer Composites , 2004 .

[43]  M. Meyyappan,et al.  Thermal Interface Properties of Cu-filled Vertically Aligned Carbon Nanofiber Arrays , 2004 .

[44]  Zhi‐Kang Xu,et al.  Preparation and properties of polyimide/aluminum nitride composites , 2004 .

[45]  J. Fothergill,et al.  Internal charge behaviour of nanocomposites , 2004 .

[46]  Jiajun Wang,et al.  Preparation and the properties of PMR‐type polyimide composites with aluminum nitride , 2003 .

[47]  V. Nebol'sin,et al.  Role of Surface Energy in the Vapor–Liquid–Solid Growth of Silicon , 2003 .

[48]  Yang Shen,et al.  Dielectric properties of carbon fiber filled low-density polyethylene , 2003 .

[49]  Xiao Hu,et al.  Thermal conductivity of polystyrene–aluminum nitride composite , 2002 .

[50]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical review letters.

[51]  P. Gonon,et al.  Combined effects of humidity and thermal stress on the dielectric properties of epoxy-silica composites , 2001 .

[52]  Sanghyun Lee,et al.  The properties of AlN-filled epoxy molding compounds by the effects of filler size distribution , 2000 .

[53]  S. Kanzaki,et al.  Hot Isostatic Pressing to Increase Thermal Conductivity of Si_3N_4 Ceramics , 1999 .

[54]  H. Ishida,et al.  Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine , 1998 .

[55]  M. Hussain,et al.  Effects of wet ball-milling on particle dispersion and mechanical properties of particulate epoxy composites , 1996 .

[56]  E. Pfender,et al.  Formation of ultrafine β-silicon carbide powders in an argon thermal plasma jet , 1987 .

[57]  Zhiping Luo,et al.  Epoxy resin nanosuspensions and reinforced nanocomposites from polyaniline stabilized multi-walled carbon nanotubes , 2013 .

[58]  D. Xiong,et al.  Study on Mechanical, Thermal and Electrical Characterizations of Nano-SiC/Epoxy Composites , 2009 .

[59]  C. R. Nair,et al.  Thermal characteristics of addition-cure phenolic resins , 2001 .

[60]  D. Godovsky Device Applications of Polymer-Nanocomposites , 2000 .

[61]  K. A. Trick,et al.  Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite , 1995 .