Diatomaceous Lessons in Nanotechnology and Advanced Materials

Diatoms occupy sunlit aquatic environments. From a materialsscientist’s point of view, these unicellular algae are microscopicsilica nanofabrication factories that use two overlapping valvessealed together by girdle bands to encase themselves in a silicafrustule. The frustule is created with 3D precision of tens ofnanometers, in a hierarchical manner, and with multifunctionalproperties (Fig. 1).

[1]  M. Hildebrand,et al.  Application of AFM in understanding biomineral formation in diatoms , 2008, Pflügers Archiv - European Journal of Physiology.

[2]  S. Holmes,et al.  Zeolitisation of diatoms. , 2005, Journal of nanoscience and nanotechnology.

[3]  Rajesh R Naik,et al.  Enzyme immobilization in a biomimetic silica support , 2004, Nature Biotechnology.

[4]  K. Cooksey,et al.  A live bioprobe for studying diatom-surface interactions. , 2004, Biophysical journal.

[5]  Ivo Rendina,et al.  Marine diatoms as optical chemical sensors , 2005 .

[6]  Christopher S. Gaddis,et al.  Freestanding microscale 3D polymeric structures with biologically-derived shapes and nanoscale features , 2004 .

[7]  Ralph S. Quatrano,et al.  MINIREVIEW—THE FIRST KISS: ESTABLISHMENT AND CONTROL OF INITIAL ADHESION BY RAPHID DIATOMS , 1998 .

[8]  Effects of Particle Size, Flow Velocity, and Cell Surface Microtopography on the Motion of Submicrometer Particles over Diatoms , 2002 .

[9]  P K Hansma,et al.  Micromechanical and structural properties of a pennate diatom investigated by atomic force microscopy , 2001, Journal of microscopy.

[10]  R. Naik,et al.  Study of the chemical and physical influences upon in vitro peptide-mediated silica formation. , 2004, Biomacromolecules.

[11]  C. Hamm,et al.  The evolution of advanced mechanical defenses and potential technological applications of diatom shells. , 2005, Journal of nanoscience and nanotechnology.

[12]  Mark Hildebrand,et al.  Biological processing of nanostructured silica in diatoms , 2003 .

[13]  Rajesh R Naik,et al.  Protein- and peptide-directed syntheses of inorganic materials. , 2008, Chemical reviews.

[14]  Clayton Jeffryes,et al.  Biosynthesis of silicon-germanium oxide nanocomposites by the marine diatom Nitzschia frustulum. , 2005, Journal of nanoscience and nanotechnology.

[15]  Chris Bowler,et al.  Prospects in diatom research. , 2005, Current opinion in biotechnology.

[16]  Joanna Aizenberg,et al.  Crystallization in Patterns: A Bio‐Inspired Approach , 2004 .

[17]  Nicolas H Voelcker,et al.  AFM nanoindentations of diatom biosilica surfaces. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[18]  P. Maddalena,et al.  Highly sensitive optochemical gas detection by luminescent marine diatoms , 2007 .

[19]  K. Sandhage,et al.  Manganese‐Doped Zinc Orthosilicate‐Bearing Phosphor Microparticles with Controlled Three‐Dimensional Shapes Derived from Diatom Frustules , 2007 .

[20]  D. Morse Silicon biotechnology: harnessing biological silica production to construct new materials , 1999 .

[21]  M. Sumper,et al.  A Phase Separation Model for the Nanopatterning of Diatom Biosilica , 2002, Science.

[22]  Richard Gordon,et al.  Potential roles for diatomists in nanotechnology. , 2005, Journal of nanoscience and nanotechnology.

[23]  E. Roberts,et al.  A novel porous carbon based on diatomaceous earth. , 2006, Chemical communications.

[24]  G. Subhash,et al.  Investigation of mechanical properties of diatom frustules using nanoindentation. , 2005, Journal of nanoscience and nanotechnology.

[25]  K. Schulten,et al.  Molecular biomimetics: nanotechnology through biology , 2003, Nature materials.

[26]  K. Sandhage,et al.  Zn2SiO4‐coated microparticles with biologically‐controlled 3D shapes , 2005 .

[27]  Ce Wang,et al.  Diatom‐Templated Synthesis of Ordered Meso/Macroporous Hierarchical Materials , 2006 .

[28]  Yajun Wang,et al.  Zeolitization of diatomite to prepare hierarchical porous zeolite materials through a vapor-phase transport process , 2002 .

[29]  Matthew B. Dickerson,et al.  Novel, Bioclastic Route to Self‐Assembled, 3D, Chemically Tailored Meso/Nanostructures: Shape‐Preserving Reactive Conversion of Biosilica (Diatom) Microshells , 2002 .

[30]  T. Lebeau,et al.  Diatom cultivation and biotechnologically relevant products. Part II: Current and putative products , 2003, Applied Microbiology and Biotechnology.

[31]  C. Bauer,et al.  Silica particle formation in confined environments via bioinspired polyamine catalysis at near-neutral pH. , 2007, Small.

[32]  Andrew R. Parker,et al.  Biomimetics of photonic nanostructures. , 2007, Nature nanotechnology.

[33]  Paul Mulvaney,et al.  NANOSTRUCTURE OF THE DIATOM FRUSTULE AS REVEALED BY ATOMIC FORCE AND SCANNING ELECTRON MICROSCOPY , 2001 .

[34]  K. Sandhage,et al.  Formation of nanostructured, nanocrystalline boron nitride microparticles with diatom-derived 3-D shapes. , 2007, Chemical communications.

[35]  J. W. Simpson,et al.  DNA transport by a micromachined Brownian ratchet device. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Ye Cai,et al.  Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas , 2007, Nature.

[37]  Rajesh R Naik,et al.  Silica-precipitating peptides isolated from a combinatorial phage display peptide library. , 2002, Journal of nanoscience and nanotechnology.

[38]  M. Akinc,et al.  Conversion of SiO2 Diatom Frustules to BaTiO3 and SrTiO3 , 2006 .

[39]  Herbert Stachelberger,et al.  Diatom bionanotribology--biological surfaces in relative motion: their design, friction, adhesion, lubrication and wear. , 2005, Journal of nanoscience and nanotechnology.

[40]  J. Zimmerberg,et al.  Cellular Biophysics: Bacterial Endospore, Membranes and Random Fluctuation , 2006, Current Biology.

[41]  Christopher S. Gaddis,et al.  Free-standing microscale structures of nanocrystalline zirconia with biologically replicable three-dimensional shapes , 2005 .

[42]  A. Ajdari,et al.  Directional motion of brownian particles induced by a periodic asymmetric potential , 1994, Nature.

[43]  G. Xue,et al.  Polyaniline on surface modification of diatomite: a novel way to obtain conducting diatomite fillers , 2003 .

[44]  Stephen Mann,et al.  Chiral templating of silica-lipid lamellar mesophase with helical tubular architecture. , 2002, Angewandte Chemie.

[45]  Sven Matthias,et al.  Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets , 2003, Nature.

[46]  Clément Sanchez,et al.  Biomimetism and bioinspiration as tools for the design of innovative materials and systems , 2005, Nature materials.

[47]  A. Parker,et al.  Modification of the physical and optical properties of the frustule of the diatom Coscinodiscus wailesii by nickel sulfate , 2007 .

[48]  Victor Smetacek,et al.  Architecture and material properties of diatom shells provide effective mechanical protection , 2003, Nature.

[49]  A. Cavalier,et al.  Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. , 2007, Nature materials.

[50]  S. Schultes,et al.  Grazing-induced changes in cell wall silicification in a marine diatom. , 2007, Protist.

[51]  A. Walcarius,et al.  An aqueous route to organically functionalized silica diatom skeletons , 2007 .

[52]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[53]  James G. Mitchell,et al.  Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations. , 2006, Journal of nanoscience and nanotechnology.

[54]  S. Holmes,et al.  Removal and immobilisation of cobalt ions by a novel, hierarchically structured, diatomite/zeolite Y composite , 2007 .

[55]  H. White-Cooper,et al.  Exploitation of Diatom Frustules for Nanotechnology: Tethering Active Biomolecules , 2008 .

[56]  Ulrich B Wiesner,et al.  Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids. , 2007, Nature materials.

[57]  John E. Sader,et al.  PROBING THE SURFACE OF LIVING DIATOMS WITH ATOMIC FORCE MICROSCOPY: THE NANOSTRUCTURE AND NANOMECHANICAL PROPERTIES OF THE MUCILAGE LAYER 1 , 2003 .

[58]  M. de Stefano,et al.  Interfacing the nanostructured biosilica microshells of the marine diatom Coscinodiscus wailesii with biological matter. , 2008, Acta biomaterialia.

[59]  Michael W. Anderson,et al.  Hierarchical Pore Structures through Diatom Zeolitization , 2000 .

[60]  V. Sanhueza,et al.  Synthesis of ZSM‐5 from diatomite: a case of zeolite synthesis from a natural material , 2004 .

[61]  Anusuya Willis,et al.  Adhesive modular proteins occur in the extracellular mucilage of the motile, pennate diatom Phaeodactylum tricornutum. , 2006, Biophysical journal.

[62]  J. B. Thompson,et al.  In vivo nanoscale atomic force microscopy investigation of diatom adhesion properties , 2002 .

[63]  Chris Bowler,et al.  Revealing the molecular secrets of marine diatoms. , 2002, Annual review of plant biology.

[64]  Christopher S. Gaddis,et al.  Merging Biological Self-Assembly with Synthetic Chemical Tailoring: The Potential for 3-D Genetically Engineered Micro/Nano-Devices (3-D GEMS) , 2005 .

[65]  A Barreau,et al.  A simple method for SEM examination of sectioned diatom frustules , 2001, Journal of microscopy.

[66]  P. Lopez,et al.  Mimicking biogenic silica nanostructures formation , 2005 .

[67]  A M Jayannavar,et al.  Giant diffusion and coherent transport in tilted periodic inhomogeneous systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  Luca De Stefano,et al.  Lensless light focusing with the centric marine diatom Coscinodiscus walesii. , 2007, Optics express.

[69]  Stephen Mann,et al.  Chiral Templating of SilicaâLipid Lamellar Mesophase with Helical Tubular Architecture We thank the University of Bristol and EPSRC for financial support, and Dr. S. A. Davis and Dr. C. Göltner for helpful discussions. , 2002 .

[70]  R. Gordon,et al.  Beyond micromachining: the potential of diatoms. , 1999, Trends in biotechnology.

[71]  R. Langer,et al.  Designing materials for biology and medicine , 2004, Nature.

[72]  Christopher S. Gaddis,et al.  Enhanced hydrothermal conversion of surfactant-modified diatom microshells into barium titanate replicas , 2007 .

[73]  L. Sigg,et al.  Chemical and Spectroscopic Characterization of Algae Surfaces , 1997 .

[74]  W. Kooistra,et al.  MORPHOLOGY OF THE DIATOM GENUS CAMPYLONEIS (BACILLARIOPHYCEAE, BACILLARIOPHYTA), WITH A DESCRIPTION OF CAMPYLONEIS JULIAE SP. NOV. AND AN EVALUATION OF THE FUNCTION OF THE VALVOCOPULAE 1 , 2003 .

[75]  Chad A Mirkin,et al.  Control of nanoparticle assembly by using DNA-modified diatom templates. , 2004, Angewandte Chemie.

[76]  James G. Mitchell,et al.  Complex gold nanostructures derived by templating from diatom frustules. , 2005, Chemical communications.

[77]  David W. Tomlin,et al.  Ultrafast holographic nanopatterning of biocatalytically formed silica , 2001, Nature.

[78]  J. Jiao,et al.  Biological fabrication of photoluminescent nanocomb structures by metabolic incorporation of germanium into the biosilica of the diatom Nitzschia frustulum. , 2008, ACS nano.

[79]  Erik Dujardin,et al.  Bio-inspired materials chemistry , 2002 .

[80]  Hugh Aldersey-Williams,et al.  Towards biomimetic architecture , 2004, Nature materials.

[81]  Giant coherence in driven systems , 2005, cond-mat/0511519.

[82]  David M. Williams,et al.  Morphological investigations of the frustule, perizonium and initial valves of the freshwater diatom Achnanthes crenulata Grunow (Bacillariophyceae) , 2006 .

[83]  Philip Ball,et al.  Life's lessons in design , 2001, Nature.

[84]  James G. Mitchell,et al.  Controlled pore structure modification of diatoms by atomic layer deposition of TiO2 , 2006 .

[85]  Dusan Losic,et al.  Rapid Fabrication of Micro‐ and Nanoscale Patterns by Replica Molding from Diatom Biosilica , 2007 .

[86]  Sang Hoon Joo,et al.  Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation , 1999 .

[87]  K. Sandhage,et al.  Three‐Dimensional Assemblies of Zirconia Nanocrystals Via Shape‐Preserving Reactive Conversion of Diatom Microshells , 2006 .

[88]  L. Stefano,et al.  Nanostructures in diatom frustules: functional morphology of valvocopulae in Cocconeidacean monoraphid taxa. , 2005 .

[89]  Nicole Poulsen,et al.  Silica immobilization of an enzyme through genetic engineering of the diatom Thalassiosira pseudonana. , 2007, Angewandte Chemie.

[90]  E Bourgeat-Lami,et al.  Organic-inorganic nanostructured colloids. , 2002, Journal of nanoscience and nanotechnology.

[91]  Siddharth V. Patwardhan,et al.  Bioinspired synthesis of new silica structures. , 2003, Chemical communications.

[92]  K. Sandhage,et al.  Sol-gel synthesis on self-replicating single-cell scaffolds: applying complex chemistries to nature's 3-D nanostructured templates. , 2005, Chemical communications.

[93]  Qixin Guo,et al.  Synthesis of ZnFe2O4/SiO2 composites derived from a diatomite template , 2007, Bioinspiration & biomimetics.

[94]  Wei Wang,et al.  Electroluminescence and Photoluminescence from Nanostructured Diatom Frustules Containing Metabolically Inserted Germanium , 2008 .

[95]  I. Gebeshuber,et al.  Micromechanics in biogenic hydrated silica: Hinges and interlocking devices in diatoms , 2006 .

[96]  K. Sandhage,et al.  Phosphor microparticles of controlled three-dimensional shape from phytoplankton , 2006 .

[97]  R. Gordon,et al.  Star Trek replicators and diatom nanotechnology. , 2003, Trends in biotechnology.

[98]  Chong Han,et al.  On biologically produced nanomaterials , 2006 .

[99]  Mark Hildebrand,et al.  Prospects of manipulating diatom silica nanostructure. , 2005, Journal of nanoscience and nanotechnology.

[100]  M. Brzezinski,et al.  Atomic force microscopy study of living diatoms in ambient conditions , 2003, Journal of microscopy.

[101]  R. Sakai,et al.  Long‐Chain Polyamines (LCPAs) from Marine Sponge: Possible Implication in Spicule Formation , 2007, Chembiochem : a European journal of chemical biology.

[102]  T. Coradin,et al.  Synthesis, characterization and diffusion properties of biomimetic silica-coated gelatine beads , 2005 .

[103]  R. Strzepek,et al.  Photoprotection capacity differs among diatoms: Possible consequences on the spatial distribution of diatoms related to fluctuations in the underwater light climate , 2007 .

[104]  G. Ozin,et al.  Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons , 1995, Nature.

[105]  Dusan Losic,et al.  Fabrication of gold nanostructures by templating from porous diatom frustules , 2006 .

[106]  K. Sandhage,et al.  Anatase assemblies from algae: coupling biological self-assembly of 3-D nanoparticle structures with synthetic reaction chemistry. , 2004, Chemical communications.

[107]  Wim Vyverman,et al.  A luminescence study of porous diatoms , 2005 .

[108]  K. Sandhage,et al.  Three‐Dimensional Magnesia‐Based Nanocrystal Assemblies Via Low‐Temperature Magnesiothermic Reaction of Diatom Microshells , 2005 .

[109]  T. Fuhrmann,et al.  Diatoms as living photonic crystals , 2004 .

[110]  J. Jiao,et al.  Nanofabrication of green luminescent Zn2SiO4 : Mn using biogenic silica , 2007 .

[111]  M. Sumper,et al.  Learning from Diatoms: Nature's Tools for the Production of Nanostructured Silica , 2006 .

[112]  C. Mirkin,et al.  Sacrificial biological templates for the formation of nanostructured metallic microshells. , 2005, Angewandte Chemie.

[113]  Dusan Losic,et al.  Atomic force microscopy (AFM) characterisation of the porous silica nanostructure of two centric diatoms , 2007 .

[114]  Joanna Aizenberg,et al.  Biological glass fibers: correlation between optical and structural properties. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[115]  Patrick W. Whitlock,et al.  Controlled formation of biosilica structures in vitro. , 2003, Chemical communications.

[116]  E. G. Vrieling,et al.  Diatom silicon biomineralization as an inspirational source of new approaches to silica production , 1999 .