A Riemannian approach to graph embedding

In this paper, we make use of the relationship between the Laplace-Beltrami operator and the graph Laplacian, for the purposes of embedding a graph onto a Riemannian manifold. To embark on this study, we review some of the basics of Riemannian geometry and explain the relationship between the Laplace-Beltrami operator and the graph Laplacian. Using the properties of Jacobi fields, we show how to compute an edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths on the manifold between nodes. For the particular case of a constant sectional curvature surface, we use the Kruskal coordinates to compute edge weights that are proportional to the geodesic distance between points. We use the resulting edge-weight matrix to embed the nodes of the graph onto a Riemannian manifold. To do this, we develop a method that can be used to perform double centring on the Laplacian matrix computed from the edge-weights. The embedding coordinates are given by the eigenvectors of the centred Laplacian. With the set of embedding coordinates at hand, a number of graph manipulation tasks can be performed. In this paper, we are primarily interested in graph-matching. We recast the graph-matching problem as that of aligning pairs of manifolds subject to a geometric transformation. We show that this transformation is Pro-crustean in nature. We illustrate the utility of the method on image matching using the COIL database.

[1]  Michael Brady,et al.  Feature-based correspondence: an eigenvector approach , 1992, Image Vis. Comput..

[2]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[3]  S. Zucker Estimates for the classical parametrix for the Laplacian , 1978 .

[4]  Ulrike von Luxburg,et al.  Limits of Spectral Clustering , 2004, NIPS.

[5]  Herbert Busemann,et al.  The geometry of geodesics , 1955 .

[6]  Kim L. Boyer,et al.  Quantitative measures of change based on feature organization: eigenvalues and eigenvectors , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[8]  William J. Christmas,et al.  Structural Matching in Computer Vision Using Probabilistic Relaxation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[11]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[12]  Edwin R. Hancock,et al.  Iterative Procrustes alignment with the EM algorithm , 2002, Image Vis. Comput..

[13]  J. Mccleary,et al.  Geometry from a Differentiable Viewpoint: Recapitulation and coda , 1994 .

[14]  Philip H. S. Torr,et al.  The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix , 1997, International Journal of Computer Vision.

[15]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[16]  Mikhail Belkin,et al.  Towards a theoretical foundation for Laplacian-based manifold methods , 2005, J. Comput. Syst. Sci..

[17]  Josef Kittler,et al.  Discrete relaxation , 1990, Pattern Recognit..

[18]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[19]  H. C. Longuet-Higgins,et al.  An algorithm for associating the features of two images , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  A. Singer From graph to manifold Laplacian: The convergence rate , 2006 .

[21]  Patrick J. F. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 2003 .

[22]  Terry Caelli,et al.  An eigenspace projection clustering method for inexact graph matching , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  S. Ullman,et al.  Filling-in the gaps: The shape of subjective contours and a model for their generation , 1976, Biological Cybernetics.

[24]  Andrew Ranicki,et al.  Algebraic L-theory and Topological Manifolds , 1993 .

[25]  Huiling Le,et al.  Multidimensional scaling of simplex shapes , 1999, Pattern Recognit..

[26]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[27]  P. Groenen,et al.  Modern multidimensional scaling , 1996 .

[28]  Ulrike von Luxburg,et al.  From Graphs to Manifolds - Weak and Strong Pointwise Consistency of Graph Laplacians , 2005, COLT.

[29]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[30]  Kim L. Boyer,et al.  Quantitative Measures of Change Based on Feature Organization: Eigenvalues and Eigenvectors , 1998, Comput. Vis. Image Underst..

[31]  W. Torgerson,et al.  Multidimensional scaling of similarity , 1965, Psychometrika.

[32]  S. Rosenberg The Laplacian on a Riemannian Manifold: The Laplacian on a Riemannian Manifold , 1997 .

[33]  H. Flanders Differential Forms with Applications to the Physical Sciences , 1964 .

[34]  Ioannis G. Tollis,et al.  Efficient Orthogonal Drawings of High Degree Graphs , 2000, Algorithmica.

[35]  T. J. Willmore,et al.  DIFFERENTIAL FORMS WITH APPLICATIONS TO THE PHYSICAL SCIENCES , 1967 .

[36]  Steven Gold,et al.  A Graduated Assignment Algorithm for Graph Matching , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[38]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[39]  B. O'neill Elementary Differential Geometry , 1966 .

[40]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[41]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Roberto Tamassia On-Line Planar Graph Embedding , 1996, J. Algorithms.

[43]  Edwin R. Hancock,et al.  Structural Graph Matching Using the EM Algorithm and Singular Value Decomposition , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Hanan Samet,et al.  Properties of Embedding Methods for Similarity Searching in Metric Spaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  John D. Lafferty,et al.  Diffusion Kernels on Statistical Manifolds , 2005, J. Mach. Learn. Res..

[46]  N. Hitchin A panoramic view of riemannian geometry , 2006 .

[47]  A. Householder,et al.  Discussion of a set of points in terms of their mutual distances , 1938 .

[48]  Shinji Umeyama,et al.  An Eigendecomposition Approach to Weighted Graph Matching Problems , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.