Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford-Shah Functional
暂无分享,去创建一个
Daniel Cremers | Joachim Weickert | Christoph Schnörr | Florian Tischhäuser | D. Cremers | J. Weickert | C. Schnörr | Florian Tischhäuser | Daniel Cremers | Florian Tischhäuser | Joachim Weickert | Christoph Schnörr
[1] K. Mardia,et al. Statistical Shape Analysis , 1998 .
[2] Charles Kervrann. Modeles statistiques pour la segmentation et le suivi de structures deformables bidimensionnelles dans une sequence d'images , 1995 .
[3] A. Brandt,et al. The Multi-Grid Method for the Diffusion Equation with Strongly Discontinuous Coefficients , 1981 .
[4] Yunmei Chen,et al. On the incorporation of shape priors into geometric active contours , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.
[5] Rachid Deriche,et al. Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach , 2000, ECCV.
[6] Daniel Cremers,et al. Towards Recognition-Based Variational Segmentation Using Shape Priors and Dynamic Labeling , 2003, Scale-Space.
[7] S. McCormick,et al. A multigrid tutorial (2nd ed.) , 2000 .
[8] D. Cremers,et al. Learning Translation Invariant Shape Knowledge for Steering Diffusion-Snakes , 2000 .
[9] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[10] Daniel Cremers,et al. Nonlinear Shape Statistics in Mumford-Shah Based Segmentation , 2002, ECCV.
[11] Song-Chun Zhu,et al. Prior Learning and Gibbs Reaction-Diffusion , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[12] Timothy F. Cootes,et al. Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..
[13] O. Faugeras,et al. Statistical shape influence in geodesic active contours , 2002, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..
[14] Stefano Soatto,et al. A Pseudo-distance for Shape Priors in Level Set Segmentation , 2003 .
[15] Alan L. Yuille,et al. Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..
[16] J. Weickert. Applications of nonlinear diffusion in image processing and computer vision , 2000 .
[17] Ulf Grenander,et al. Hands: A Pattern Theoretic Study of Biological Shapes , 1990 .
[18] Michael Isard,et al. Active Contours , 2000, Springer London.
[19] Thomas Brox,et al. High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.
[20] Daniel Cremers,et al. Kernel Density Estimation and Intrinsic Alignment for Knowledge-Driven Segmentation: Teaching Level Sets to Walk , 2004, DAGM-Symposium.
[21] P. Wesseling. An Introduction to Multigrid Methods , 1992 .
[22] D. Cremers,et al. Diffusion-snakes: combining statistical shape knowledge and image information in a variational framework , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.
[23] Gerald Sommer,et al. Algebraic Frames for the Perception-Action Cycle , 2000, Lecture Notes in Computer Science.
[24] Guillermo Sapiro,et al. Geodesic Active Contours , 1995, International Journal of Computer Vision.
[25] Demetri Terzopoulos,et al. Snakes: Active contour models , 2004, International Journal of Computer Vision.
[26] Michael E. Tipping,et al. Probabilistic Principal Component Analysis , 1999 .
[27] Daniel Cremers,et al. Multiphase Dynamic Labeling for Variational Recognition-Driven Image Segmentation , 2004, ECCV.
[28] Anthony J. Yezzi,et al. Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.
[29] Charles Kervrann,et al. Statistical deformable model-based segmentation of image motion , 1999, IEEE Trans. Image Process..
[30] L. Vese,et al. A level set algorithm for minimizing the Mumford-Shah functional in image processing , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.
[31] Stefano Soatto,et al. The Mumford-Shah functional: from segmentation to stereo , 2003 .
[32] Amos Storkey,et al. Advances in Neural Information Processing Systems 20 , 2007 .
[33] J. Dendy. Black box multigrid , 1982 .
[34] P. M. De Zeeuw,et al. Matrix-dependent prolongations and restrictions in a blackbox multigrid solver , 1990 .
[35] D. Mumford,et al. Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .
[36] Sam T. Roweis,et al. EM Algorithms for PCA and SPCA , 1997, NIPS.
[37] Michael Werman,et al. Similarity and Affine Invariant Distances Between 2D Point Sets , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[38] Alex Pentland,et al. Probabilistic visual learning for object detection , 1995, Proceedings of IEEE International Conference on Computer Vision.
[39] Demetri Terzopoulos,et al. Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..
[40] Daniel Cremers,et al. Diffusion-Snakes Using Statistical Shape Knowledge , 2000, AFPAC.
[41] Thomas G. Dietterich,et al. In Advances in Neural Information Processing Systems 12 , 1991, NIPS 1991.
[42] Daniel Cremers,et al. Motion Competition: Variational Integration of Motion Segmentation and Shape Regularization , 2002, DAGM-Symposium.
[43] Lawrence H. Staib,et al. Boundary finding with correspondence using statistical shape models , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).
[44] J. Morel,et al. Segmentation of images by variational methods: a constructive approach. , 1988 .
[45] Long Chen. INTRODUCTION TO MULTIGRID METHODS , 2005 .
[46] William L. Briggs,et al. A multigrid tutorial , 1987 .
[47] C. Goodall. Procrustes methods in the statistical analysis of shape , 1991 .