Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford-Shah Functional

We present a modification of the Mumford-Shah functional and its cartoon limit which facilitates the incorporation of a statistical prior on the shape of the segmenting contour. By minimizing a single energy functional, we obtain a segmentation process which maximizes both the grey value homogeneity in the separated regions and the similarity of the contour with respect to a set of training shapes. We propose a closed-form, parameter-free solution for incorporating invariance with respect to similarity transformations in the variational framework. We show segmentation results on artificial and real-world images with and without prior shape information. In the cases of noise, occlusion or strongly cluttered background the shape prior significantly improves segmentation. Finally we compare our results to those obtained by a level set implementation of geodesic active contours.

[1]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[2]  Charles Kervrann Modeles statistiques pour la segmentation et le suivi de structures deformables bidimensionnelles dans une sequence d'images , 1995 .

[3]  A. Brandt,et al.  The Multi-Grid Method for the Diffusion Equation with Strongly Discontinuous Coefficients , 1981 .

[4]  Yunmei Chen,et al.  On the incorporation of shape priors into geometric active contours , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[5]  Rachid Deriche,et al.  Coupled Geodesic Active Regions for Image Segmentation: A Level Set Approach , 2000, ECCV.

[6]  Daniel Cremers,et al.  Towards Recognition-Based Variational Segmentation Using Shape Priors and Dynamic Labeling , 2003, Scale-Space.

[7]  S. McCormick,et al.  A multigrid tutorial (2nd ed.) , 2000 .

[8]  D. Cremers,et al.  Learning Translation Invariant Shape Knowledge for Steering Diffusion-Snakes , 2000 .

[9]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[10]  Daniel Cremers,et al.  Nonlinear Shape Statistics in Mumford-Shah Based Segmentation , 2002, ECCV.

[11]  Song-Chun Zhu,et al.  Prior Learning and Gibbs Reaction-Diffusion , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[13]  O. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2002, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[14]  Stefano Soatto,et al.  A Pseudo-distance for Shape Priors in Level Set Segmentation , 2003 .

[15]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  J. Weickert Applications of nonlinear diffusion in image processing and computer vision , 2000 .

[17]  Ulf Grenander,et al.  Hands: A Pattern Theoretic Study of Biological Shapes , 1990 .

[18]  Michael Isard,et al.  Active Contours , 2000, Springer London.

[19]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[20]  Daniel Cremers,et al.  Kernel Density Estimation and Intrinsic Alignment for Knowledge-Driven Segmentation: Teaching Level Sets to Walk , 2004, DAGM-Symposium.

[21]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[22]  D. Cremers,et al.  Diffusion-snakes: combining statistical shape knowledge and image information in a variational framework , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[23]  Gerald Sommer,et al.  Algebraic Frames for the Perception-Action Cycle , 2000, Lecture Notes in Computer Science.

[24]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[25]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[26]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[27]  Daniel Cremers,et al.  Multiphase Dynamic Labeling for Variational Recognition-Driven Image Segmentation , 2004, ECCV.

[28]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[29]  Charles Kervrann,et al.  Statistical deformable model-based segmentation of image motion , 1999, IEEE Trans. Image Process..

[30]  L. Vese,et al.  A level set algorithm for minimizing the Mumford-Shah functional in image processing , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[31]  Stefano Soatto,et al.  The Mumford-Shah functional: from segmentation to stereo , 2003 .

[32]  Amos Storkey,et al.  Advances in Neural Information Processing Systems 20 , 2007 .

[33]  J. Dendy Black box multigrid , 1982 .

[34]  P. M. De Zeeuw,et al.  Matrix-dependent prolongations and restrictions in a blackbox multigrid solver , 1990 .

[35]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[36]  Sam T. Roweis,et al.  EM Algorithms for PCA and SPCA , 1997, NIPS.

[37]  Michael Werman,et al.  Similarity and Affine Invariant Distances Between 2D Point Sets , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Alex Pentland,et al.  Probabilistic visual learning for object detection , 1995, Proceedings of IEEE International Conference on Computer Vision.

[39]  Demetri Terzopoulos,et al.  Multilevel computational processes for visual surface reconstruction , 1983, Comput. Vis. Graph. Image Process..

[40]  Daniel Cremers,et al.  Diffusion-Snakes Using Statistical Shape Knowledge , 2000, AFPAC.

[41]  Thomas G. Dietterich,et al.  In Advances in Neural Information Processing Systems 12 , 1991, NIPS 1991.

[42]  Daniel Cremers,et al.  Motion Competition: Variational Integration of Motion Segmentation and Shape Regularization , 2002, DAGM-Symposium.

[43]  Lawrence H. Staib,et al.  Boundary finding with correspondence using statistical shape models , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[44]  J. Morel,et al.  Segmentation of images by variational methods: a constructive approach. , 1988 .

[45]  Long Chen INTRODUCTION TO MULTIGRID METHODS , 2005 .

[46]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[47]  C. Goodall Procrustes methods in the statistical analysis of shape , 1991 .