Mechanism of Pile Group Settlement in Liquefiable Soils

This paper examines the settlement of instrumented 2 · 2 model pile groups in liquefiable soil based on the results of dynamic centrifuge tests. The piles are end-bearing in dense sand, and are instrumented such that base, shaft and total pile load components can be measured. The data suggest that the overall co-seismic group settlement is accrued from incremental settlements of the individual piles as the group rocks under the action of the kinematic and inertial lateral loads. A Newmarkian framework for describing this behaviour is presented in which permanent settlement is incremented whenever the load in any of the piles exceeds the capacity of the soil to support the pile. This bearing capacity of the piles in liquefied soil is estimated based on measured dynamic soil properties during shaking and observations of the changes in load carried by the piles. The contribution of the pile cap in reducing settlement is also discussed.