Localization of binary neutron star mergers with second and third generation gravitational-wave detectors

The observation of gravitational wave signals from binary black hole mergers has established the field of gravitational wave astronomy. It is expected that future networks of gravitational wave detectors will possess great potential in probing various aspects of astronomy. An important consideration for successive improvement of current detectors or establishment on new sites is knowledge of the minimum number of detectors required to perform precision astronomy. We attempt to answer this question by assessing ability of future detector networks in detecting and localizing binary neutron stars mergers in the sky. This is an important aspect as a good localization ability is crucial for many of the scientific goals of gravitational wave astronomy, such as electromagnetic follow-up, measuring the properties of compact binaries throughout cosmic history, and cosmology. We find that although two detectors at improved sensitivity are sufficient to get a substantial increase in the number of observed signals, at least three detectors of comparable sensitivity are required to localize majority of the signals, typically to within around 10 deg$^{2}$ --- adequate for follow-up with most wide field of view optical telescopes.

[1]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[2]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[3]  S. Fairhurst Localization of transient gravitational wave sources: beyond triangulation , 2017, 1712.04724.

[4]  Wen Zhao,et al.  Localization accuracy of compact binary coalescences detected by the third-generation gravitational-wave detectors and implication for cosmology , 2017, 1710.05325.

[5]  B. A. Boom,et al.  GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence , 2017, 1711.05578.

[6]  P. Cowperthwaite,et al.  The Combined Ultraviolet, Optical, and Near-infrared Light Curves of the Kilonova Associated with the Binary Neutron Star Merger GW170817: Unified Data Set, Analytic Models, and Physical Implications , 2017, 1710.11576.

[7]  Larry Denneau,et al.  A kilonova as the electromagnetic counterpart to a gravitational-wave source , 2017, Nature.

[8]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[9]  K. Ulaczyk,et al.  The Emergence of a Lanthanide-Rich Kilonova Following the Merger of Two Neutron Stars , 2017, 1710.05455.

[10]  M. Serra-Ricart,et al.  MASTER Optical Detection of the First LIGO/Virgo Neutron Star Binary Merger GW170817 , 2017, 1710.05461.

[11]  B. Metzger,et al.  Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event , 2017, Nature.

[12]  Dovi Poznanski,et al.  Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger , 2017, Nature.

[13]  T. Sakamoto,et al.  The X-ray counterpart to the gravitational-wave event GW170817 , 2017, Nature.

[14]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017, 1710.05833.

[15]  M. M. Kasliwal,et al.  A radio counterpart to a neutron star merger , 2017, Science.

[16]  P. B. Covas,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[17]  Armin Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera , 2017, The Astrophysical Journal.

[18]  Saurabh W. Jha,et al.  The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck , 2017, 1710.05854.

[19]  E. Bozzo,et al.  INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817 , 2017, 1710.05449.

[20]  Kazuya Matsubayashi,et al.  J-GEM observations of an electromagnetic counterpart to the neutron star merger GW170817 , 2017, 1710.05848.

[21]  Chris L. Fryer,et al.  Swift and NuSTAR observations of GW170817: Detection of a blue kilonova , 2017, Science.

[22]  D. Frail,et al.  Illuminating gravitational waves: A concordant picture of photons from a neutron star merger , 2017, Science.

[23]  J. Prieto,et al.  Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis , 2017, Science.

[24]  J. Prochaska,et al.  Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.

[25]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-Ray Bursts , 2017, 1710.05438.

[26]  J. Frieman,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale , 2017, 1710.05458.

[27]  C. Guidorzi,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VI. Radio Constraints on a Relativistic Jet and Predictions for Late-time Emission from the Kilonova Ejecta , 2017, 1710.05457.

[28]  C. Guidorzi,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. V. Rising X-Ray Emission from an Off-axis Jet , 2017, 1710.05431.

[29]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South , 2017, 1710.05454.

[30]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta , 2017, 1710.05456.

[31]  Jr.,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models , 2017, 1710.05840.

[32]  R. Nichol,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Dark Energy Camera Discovery of the Optical Counterpart , 2017, 1710.05459.

[33]  C. A. Wilson-Hodge,et al.  An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A , 2017, 1710.05446.

[34]  J. K. Blackburn,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.

[35]  A. Molino,et al.  Observations of the First Electromagnetic Counterpart to a Gravitational-wave Source by the TOROS Collaboration , 2017, 1710.05844.

[36]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[37]  Matteo Cantiello,et al.  Off-axis Prompt X-Ray Transients from the Cocoon of Short Gamma-Ray Bursts , 2017, 1709.01468.

[38]  M. Evans,et al.  Frequency-dependent responses in third generation gravitational-wave detectors , 2017, 1708.06843.

[39]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[40]  Alexander H. Nitz,et al.  Detecting Binary Compact-object Mergers with Gravitational Waves: Understanding and Improving the Sensitivity of the PyCBC Search , 2017, 1705.01513.

[41]  Y. Wang,et al.  All-sky search for short gravitational-wave bursts in the first Advanced LIGO run , 2016, 1611.02972.

[42]  B. Metzger,et al.  Kilonovae , 2016, Living Reviews in Relativity.

[43]  M. Evans,et al.  Parameter estimation for binary black holes with networks of third-generation gravitational-wave detectors , 2016, 1610.06917.

[44]  Tao Yang,et al.  Estimating cosmological parameters by the simulated data of gravitational waves from the Einstein Telescope , 2016, 1608.08008.

[45]  Y. Wang,et al.  Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914 , 2016, 1602.03845.

[46]  W. F. Ong,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. II. UV, Optical, and Near-IR Light Curves and Comparison to Kilonova Models , 2017 .

[47]  W. F. Ong,et al.  THE ELECTROMAGNETIC COUNTERPART OF THE BINARY NEUTRON STAR MERGER LIGO/VIRGO GW170817. VII. PROPERTIES OF THE HOST GALAXY AND CONSTRAINTS ON THE MERGER TIMESCALE , 2017 .

[48]  W. F. Ong,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. V. Rising X-Ray Emission from an Off-axis Jet , 2017, 1710.05431.

[49]  B. A. Boom,et al.  Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B , 2016, 1611.07947.

[50]  Kazuya Matsubayashi,et al.  J-GEM follow-up observations of the gravitational wave source GW151226 , 2016, 1611.01588.

[51]  Y. Wang,et al.  Exploring the sensitivity of next generation gravitational wave detectors , 2016, 1607.08697.

[52]  Y. Wang,et al.  Upper limits on the rates of binary neutron star and neutron-star--black-hole mergers from Advanced LIGO's first observing run , 2016, 1607.07456.

[53]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[54]  R. Nichol,et al.  A DECAM SEARCH FOR AN OPTICAL COUNTERPART TO THE LIGO GRAVITATIONAL-WAVE EVENT GW151226 , 2016, 1606.04538.

[55]  Meng-Ru Wu,et al.  RADIOACTIVITY AND THERMALIZATION IN THE EJECTA OF COMPACT OBJECT MERGERS AND THEIR IMPACT ON KILONOVA LIGHT CURVES , 2016, 1605.07218.

[56]  P. Giommi,et al.  Localization and broadband follow-up of the gravitational-wave transient GW150914 , 2016, 1602.08492.

[57]  B. Gibson,et al.  Pan-STARRS and PESSTO search for an optical counterpart to the LIGO gravitational-wave source GW150914 , 2016, 1602.04156.

[58]  Y. Wang,et al.  GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. , 2016, Physical review. D..

[59]  Zhihui Du,et al.  Gravitational wave astrophysics, data analysis and multimessenger astronomy , 2015, ArXiv.

[60]  D. Meacher,et al.  Second Einstein Telescope mock data and science challenge: Low frequency binary neutron star data analysis , 2015, 1511.01592.

[61]  I. W. Harry,et al.  Fully-coherent all-sky search for gravitational-waves from compact binary coalescences , 2015, 1509.03426.

[62]  N. M. Brown,et al.  Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo , 2013, Living Reviews in Relativity.

[63]  Lantz,et al.  Cryogenically Cooled Ultra Low Vibration Silicon Mirrors for GW Observatories , 2016 .

[64]  Ulrike Goldschmidt,et al.  Three Hundred Years Of Gravitation , 2016 .

[65]  Brian D. Metzger,et al.  Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era , 2015, 1512.05435.

[66]  Leo P. Singer,et al.  WHOOMP! (There it is): Rapid Bayesian position reconstruction for gravitational-wave transients , 2015 .

[67]  E. Berger,et al.  A COMPREHENSIVE STUDY OF DETECTABILITY AND CONTAMINATION IN DEEP RAPID OPTICAL SEARCHES FOR GRAVITATIONAL WAVE COUNTERPARTS , 2015, 1503.07869.

[68]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[69]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[70]  Martin Hendry,et al.  Global optimization for future gravitational wave detector sites , 2014, 1409.2875.

[71]  T. Canton Efficient searches for spinning compact binaries with advanced gravitational-wave observatories , 2015 .

[72]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[73]  P. Graff,et al.  PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA , 2014, 1411.6934.

[74]  S. Fairhurst,et al.  Improved methods for detecting gravitational waves associated with short gamma-ray bursts , 2014, 1410.6042.

[75]  D. Meacher,et al.  REVISITING COINCIDENCE RATE BETWEEN GRAVITATIONAL WAVE DETECTION AND SHORT GAMMA-RAY BURST FOR THE ADVANCED AND THIRD GENERATION , 2014, 1410.2739.

[76]  S. Fairhurst,et al.  PROSPECTS FOR JOINT GRAVITATIONAL WAVE AND SHORT GAMMA-RAY BURST OBSERVATIONS , 2014, 1409.8149.

[77]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[78]  Philip Graff,et al.  THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO , 2014, 1404.5623.

[79]  D. Meacher,et al.  Second Einstein Telescope mock science challenge: Detection of the gravitational-wave stochastic background from compact binary coalescences , 2014, 1404.1134.

[80]  S. Fairhurst,et al.  Comparison of gravitational wave detector network sky localization approximations , 2013, 1310.7454.

[81]  T. Littenberg,et al.  BASIC PARAMETER ESTIMATION OF BINARY NEUTRON STAR SYSTEMS BY THE ADVANCED LIGO/VIRGO NETWORK , 2013, 1309.3273.

[82]  S. Fairhurst Improved source localization with LIGO-India , 2012, 1205.6611.

[83]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[84]  The Ligo Scientific Collaboration Enhancing the sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, 1310.0383.

[85]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[86]  Hiroaki Yamamoto,et al.  Interferometer design of the KAGRA gravitational wave detector , 2013, 1306.6747.

[87]  K. Wiersema,et al.  A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B , 2013, Nature.

[88]  E. Berger,et al.  AN r-PROCESS KILONOVA ASSOCIATED WITH THE SHORT-HARD GRB 130603B , 2013, 1306.3960.

[89]  Ik Siong Heng,et al.  Optimal networks of future gravitational-wave telescopes , 2013, 1301.3939.

[90]  Mansi Kasliwal,et al.  IDENTIFYING ELUSIVE ELECTROMAGNETIC COUNTERPARTS TO GRAVITATIONAL WAVE MERGERS: AN END-TO-END SIMULATION , 2012, 1210.6362.

[91]  S. Bose,et al.  Scientific objectives of Einstein Telescope , 2012, 1206.0331.

[92]  Stephen R. Taylor,et al.  Cosmology with the lights off: Standard sirens in the Einstein Telescope era , 2012, 1204.6739.

[93]  C. Kochanek,et al.  The observed neutron star mass distribution as a probe of the supernova explosion mechanism , 2012, 1204.5478.

[94]  C. Broeck,et al.  Mock data challenge for the Einstein Gravitational-Wave Telescope , 2012, 1201.3563.

[95]  J. Veitch,et al.  Estimating parameters of coalescing compact binaries with proposed advanced detector networks , 2011, 1201.1195.

[96]  Dimitrios Psaltis,et al.  ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS , 2012, 1201.1006.

[97]  E. Berger,et al.  WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? , 2011, 1108.6056.

[98]  W. D. Pozzo Inference of cosmological parameters from gravitational waves: Applications to second generation interferometers , 2011, 1108.1317.

[99]  C. Messenger,et al.  Measuring a cosmological distance-redshift relationship using only gravitational wave observations of binary neutron star coalescences. , 2011, Physical review letters.

[100]  Bruce Allen,et al.  FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.

[101]  S. Vitale,et al.  Application of asymptotic expansions for maximum likelihood estimators' errors to gravitational waves from inspiraling binary systems: The network case , 2011, 1108.2410.

[102]  Daniel E. Holz,et al.  LOCALIZING COMPACT BINARY INSPIRALS ON THE SKY USING GROUND-BASED GRAVITATIONAL WAVE INTERFEROMETERS , 2011, 1105.3184.

[103]  Bernard F. Schutz,et al.  Networks of gravitational wave detectors and three figures of merit , 2011, 1102.5421.

[104]  H. Lück,et al.  Toward a third generation of gravitational wave observatories , 2011 .

[105]  S. Klimenko,et al.  Localization of gravitational wave sources with networks of advanced detectors , 2011, 1101.5408.

[106]  S. Fairhurst,et al.  Targeted coherent search for gravitational waves from compact binary coalescences , 2010, 1012.4939.

[107]  S. Fairhurst,et al.  Source localization with an advanced gravitational wave detector network , 2010, 1010.6192.

[108]  Eric Chassande-Mottin,et al.  Multimessenger astronomy with the Einstein Telescope , 2010, 1004.1964.

[109]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[110]  L. Nuttall,et al.  Identifying the host galaxy of gravitational wave signals , 2010, 1009.1791.

[111]  Benno Willke,et al.  The third generation of gravitational wave observatories and their science reach , 2010 .

[112]  Linqing Wen,et al.  Geometrical Expression for the Angular Resolution of a Network of Gravitational-Wave Detectors , 2010, 1003.2504.

[113]  B. Lackey,et al.  Tidal deformability of neutron stars with realistic equations of state , 2009, 0911.3535.

[114]  S. Fairhurst Triangulation of gravitational wave sources with a network of detectors , 2009, 0908.2356.

[115]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[116]  B. S. Sathyaprakash,et al.  Cosmography with the Einstein Telescope , 2009, 0906.4151.

[117]  I. Mandel,et al.  Parameter estimation for signals from compact binary inspirals injected into LIGO data , 2009, 0905.1323.

[118]  E. S. Phinney,et al.  Finding and Using Electromagnetic Counterparts of Gravitational Wave Sources , 2009, 0903.0098.

[119]  S. Fairhurst Triangulation of gravitational wave sources with a network of detectors , 2009 .

[120]  I. Mandel,et al.  Degeneracies in sky localization determination from a spinning coalescing binary through gravitational wave observations: a Markov-chain Monte Carlo analysis for two detectors , 2008, 0812.4302.

[121]  D. McClelland,et al.  The Science benefits and preliminary design of the southern hemisphere gravitational wave detector AIGO , 2008 .

[122]  A. Perreca,et al.  Triple Michelson interferometer for a third-generation gravitational wave detector , 2008, 0804.1036.

[123]  Peter Shawhan,et al.  LOOC UP: locating and observing optical counterparts to gravitational wave bursts , 2008, 0803.0312.

[124]  C. Stubbs,et al.  Linking optical and infrared observations with gravitational wave sources through transient variability , 2007, 0712.2598.

[125]  Vicky Kalogera,et al.  Host Galaxies Catalog Used in LIGO Searches for Compact Binary Coalescence Events , 2007, 0706.1283.

[126]  N. Christensen,et al.  Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors , 2006, gr-qc/0609131.

[127]  N. Leroy,et al.  Reconstruction of source location in a network of gravitational wave interferometric detectors , 2006, gr-qc/0609118.

[128]  D. Lamb,et al.  A Study of Compact Object Mergers as Short Gamma-Ray Burst Progenitors , 2006, astro-ph/0601458.

[129]  T. Piran,et al.  The BATSE-Swift luminosity and redshift distributions of short-duration GRBs , 2005, astro-ph/0511239.

[130]  Tx,et al.  Constraint Likelihood analysis for a network of gravitational wave detectors , 2005, gr-qc/0508068.

[131]  J. Dunlop,et al.  The star-formation history of the Universe from the stellar populations of nearby galaxies , 2004, Nature.

[132]  J. Sylvestre Position estimation from a network of interferometers , 2004 .

[133]  J. Sylvestre Prospects for the Detection of Electromagnetic Counterparts to Gravitational Wave Events , 2003, astro-ph/0303512.

[134]  A. Pai,et al.  A data-analysis strategy for detecting gravitational-wave signals from inspiraling compact binaries with a network of laser-interferometric detectors , 2000, gr-qc/0009078.

[135]  T. Totani Cosmological Gamma-Ray Bursts and Evolution of Galaxies , 1997, astro-ph/9707051.

[136]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.