Automatic Classification of Restricted Lattice Walks
暂无分享,去创建一个
[1] Mireille Bousquet-Melou,et al. Counting Walks in the Quarter Plane , 2017, 1708.06192.
[2] Stavros Garoufalidis,et al. G-functions and multisum versus holonomic sequences , 2007, 0708.4354.
[3] Christian Mallinger,et al. Algorithmic Manipulations and Transformations of Univariate Holonomic Functions and Sequences , 2001 .
[4] Mireille Bousquet-Mélou,et al. Linear recurrences with constant coefficients: the multivariate case , 2000, Discret. Math..
[5] B. Beckermann,et al. A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..
[6] David H. Bailey,et al. Experimental Mathematics in Action , 2007 .
[7] Nicholas M. Katz,et al. Nilpotent connections and the monodromy theorem: Applications of a result of turrittin , 1970 .
[8] D. V. Chudnovsky,et al. Applications of Padé approximations to diophantine inequalities in values of G-functions , 1985 .
[9] Philippe Flajolet,et al. Analytic Models and Ambiguity of Context-free Languages* , 2022 .
[10] C. Brezinski,et al. Algorithmes d'Acceleration de la Convergence Etude Numerique. , 1980 .
[11] Marni Mishna,et al. Walks with small steps in the quarter plane , 2008, 0810.4387.
[12] D. Zeilberger,et al. Resurrecting the asymptotics of linear recurrences , 1985 .
[13] Bruno Salvy,et al. GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable , 1994, TOMS.
[14] Marni Mishna. Classifying lattice walks restricted to the quarter plane , 2009, J. Comb. Theory, Ser. A.
[15] Anthony J. Guttmann,et al. Algebraic approximants: a new method of series analysis , 1990 .
[16] Antoine Chambert-Loir. Théorèmes d'algébricité en géométrie diophantienne , 2001 .
[17] Éric Schost,et al. Differential equations for algebraic functions , 2007, ISSAC '07.
[18] An example of an arithmetic Fuchsian group. , 1996 .
[19] Philippe Flajolet,et al. Basic analytic combinatorics of directed lattice paths , 2002, Theor. Comput. Sci..
[20] Mireille Bousquet-M'elou,et al. Walks in the quarter plane: Kreweras’ algebraic model , 2004, math/0401067.
[21] Bernard Dwork. Differential Operators with Nilpotent p-Curvature , 1990 .
[22] Manuel Kauers,et al. The complete Generating Function for Gessel Walks is Algebraic , 2009, ArXiv.
[23] M. G. Bruin,et al. A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .
[24] Yves Marie André,et al. G-functions and geometry , 1989 .
[25] M. Dettweiler,et al. On globally nilpotent differential equations , 2006, math/0605383.
[26] Germain Kreweras,et al. Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers , 1965 .
[27] David H. Bailey,et al. Integer relation detection , 2000, Computing in Science & Engineering.
[28] Bernard Dwork,et al. An introduction to G-functions , 1994 .
[29] John Shackell,et al. Algebraic Differential Equations , 2004 .
[30] Doron Zeilberger,et al. Proof of Ira Gessel's lattice path conjecture , 2008, Proceedings of the National Academy of Sciences.
[31] Philippe Flajolet,et al. Analytic Combinatorics , 2009 .
[32] Doron Zeilberger,et al. The quasi-holonomic ansatz and restricted lattice walks , 2008, 0806.4318.