Automatic Classification of Restricted Lattice Walks

We propose an experimental mathematics approach leading to the computer-driven discovery of various structural properties of general counting functions coming from enumeration of walks.

[1]  Mireille Bousquet-Melou,et al.  Counting Walks in the Quarter Plane , 2017, 1708.06192.

[2]  Stavros Garoufalidis,et al.  G-functions and multisum versus holonomic sequences , 2007, 0708.4354.

[3]  Christian Mallinger,et al.  Algorithmic Manipulations and Transformations of Univariate Holonomic Functions and Sequences , 2001 .

[4]  Mireille Bousquet-Mélou,et al.  Linear recurrences with constant coefficients: the multivariate case , 2000, Discret. Math..

[5]  B. Beckermann,et al.  A Uniform Approach for the Fast Computation of Matrix-Type Padé Approximants , 1994, SIAM J. Matrix Anal. Appl..

[6]  David H. Bailey,et al.  Experimental Mathematics in Action , 2007 .

[7]  Nicholas M. Katz,et al.  Nilpotent connections and the monodromy theorem: Applications of a result of turrittin , 1970 .

[8]  D. V. Chudnovsky,et al.  Applications of Padé approximations to diophantine inequalities in values of G-functions , 1985 .

[9]  Philippe Flajolet,et al.  Analytic Models and Ambiguity of Context-free Languages* , 2022 .

[10]  C. Brezinski,et al.  Algorithmes d'Acceleration de la Convergence Etude Numerique. , 1980 .

[11]  Marni Mishna,et al.  Walks with small steps in the quarter plane , 2008, 0810.4387.

[12]  D. Zeilberger,et al.  Resurrecting the asymptotics of linear recurrences , 1985 .

[13]  Bruno Salvy,et al.  GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable , 1994, TOMS.

[14]  Marni Mishna Classifying lattice walks restricted to the quarter plane , 2009, J. Comb. Theory, Ser. A.

[15]  Anthony J. Guttmann,et al.  Algebraic approximants: a new method of series analysis , 1990 .

[16]  Antoine Chambert-Loir Théorèmes d'algébricité en géométrie diophantienne , 2001 .

[17]  Éric Schost,et al.  Differential equations for algebraic functions , 2007, ISSAC '07.

[18]  An example of an arithmetic Fuchsian group. , 1996 .

[19]  Philippe Flajolet,et al.  Basic analytic combinatorics of directed lattice paths , 2002, Theor. Comput. Sci..

[20]  Mireille Bousquet-M'elou,et al.  Walks in the quarter plane: Kreweras’ algebraic model , 2004, math/0401067.

[21]  Bernard Dwork Differential Operators with Nilpotent p-Curvature , 1990 .

[22]  Manuel Kauers,et al.  The complete Generating Function for Gessel Walks is Algebraic , 2009, ArXiv.

[23]  M. G. Bruin,et al.  A uniform approach for the fast computation of Matrix-type Padé approximants , 1996 .

[24]  Yves Marie André,et al.  G-functions and geometry , 1989 .

[25]  M. Dettweiler,et al.  On globally nilpotent differential equations , 2006, math/0605383.

[26]  Germain Kreweras,et al.  Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers , 1965 .

[27]  David H. Bailey,et al.  Integer relation detection , 2000, Computing in Science & Engineering.

[28]  Bernard Dwork,et al.  An introduction to G-functions , 1994 .

[29]  John Shackell,et al.  Algebraic Differential Equations , 2004 .

[30]  Doron Zeilberger,et al.  Proof of Ira Gessel's lattice path conjecture , 2008, Proceedings of the National Academy of Sciences.

[31]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[32]  Doron Zeilberger,et al.  The quasi-holonomic ansatz and restricted lattice walks , 2008, 0806.4318.