Heavy fermion stabilization of solitons in /1+1 dimensions

[1]  E. Farhi,et al.  Fractional and integer charges from Levinson's theorem , 2000, hep-th/0007189.

[2]  E. Farhi,et al.  A Heavy fermion can create a soliton: A (1+1)-dimensional example , 1999, hep-th/9912283.

[3]  G. Dunne Derivative expansion and soliton masses , 1999, hep-th/9907208.

[4]  R. Jaffe,et al.  Fermionic one-loop corrections to soliton energies in 1+1 dimensions , 1999, hep-th/9901023.

[5]  R. Jaffe,et al.  Energy, central charge, and the BPS bound for 1 + 1-dimensional supersymmetric solitons , 1998, hep-th/9808140.

[6]  R. Jaffe,et al.  Unambiguous one-loop quantum energies of 1+1 dimensional bosonic field configurations , 1998, hep-th/9805150.

[7]  M. Stephanov,et al.  Topological boundary conditions, the BPS bound, and elimination of ambiguities in the quantum mass of solitons , 1998, hep-th/9802074.

[8]  E. Farhi,et al.  FINITE QUANTUM FLUCTUATIONS ABOUT STATIC FIELD CONFIGURATIONS , 1998, hep-th/9802015.

[9]  P. Nieuwenhuizen,et al.  No saturation of the quantum Bogomolnyi bound by two-dimensional N = 1 supersymmetric solitons , 1997, hep-th/9707163.

[10]  A. Zee,et al.  Dynamical Generation of Solitons in a 1+1 Dimensional Chiral Field Theory: Non-Perturbative Dirac Operator Resolvent Analysis , 1996, hep-th/9610054.

[11]  H. Weigel,et al.  BARYONS AS CHIRAL SOLITONS IN THE NAMBU-JONA-LASINIO MODEL , 1995, hep-ph/9501213.

[12]  Naculich Quantum kinks: Solitons at strong coupling. , 1992, Physical review. D, Particles and fields.

[13]  Bagger,et al.  Quantum corrections deflate deep bags. , 1991, Physical Review Letters.

[14]  S. Dimopoulos,et al.  The vacuum abhors top-bags , 1991 .

[15]  L. Hall,et al.  Can a particle have a bag , 1990 .

[16]  Moussallam Solitons in a sigma model with a fermionic determinant. , 1989, Physical Review D, Particles and fields.

[17]  R. Perry The Calculation of Dirac Sea Effects on Finite Solitons , 1987 .

[18]  S. Kahana,et al.  The stability of a chiral soliton in the fermion one-loop approximation , 1985 .

[19]  G. Barton Levinson's theorem in one dimension: heuristics , 1985 .

[20]  S. Coleman,et al.  Aspects of Symmetry , 1985 .

[21]  E. Farhi,et al.  Decoupling a fermion whose mass is generated by a Yukawa coupling: The general case☆ , 1984 .

[22]  F. Wilczek,et al.  Possible form of vacuum deformation by heavy particles , 1984 .

[23]  F. Wilczek,et al.  Fractional Quantum Numbers on Solitons , 1981 .

[24]  D. Campbell,et al.  Semiclassical analysis of bound states in the two-dimensional sigma model , 1976 .

[25]  Sun-Sheng Shei Semiclassical Bound States in a Model with Chiral Symmetry , 1976 .

[26]  Claudio Rebbi,et al.  Solitons with Fermion Number 1/2 , 1976 .

[27]  B. Hasslacher,et al.  Semiclassical Bound States in an Asymptotically Free Theory , 1975 .

[28]  S. Coleman There are no Goldstone bosons in two dimensions , 1973 .