Deterministic photon source interfaced with a programmable silicon-nitride integrated circuit

We develop a quantum photonic platform that interconnects a high-quality quantum dot single-photon source and a low-loss photonic integrated circuit made in silicon nitride. The platform is characterized and programmed to demonstrate various multiphoton applications, including bosonic suppression laws and photonic entanglement generation. The results show a promising technological route forward to scale-up photonic quantum hardware.

[1]  R. Baets,et al.  Micro-Transfer Printing for Heterogeneous Si Photonic Integrated Circuits , 2023, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  J. Carolan,et al.  Ultra-low loss quantum photonic circuits integrated with single quantum emitters , 2022, Nature communications.

[3]  R. Osellame,et al.  High-fidelity generation of four-photon GHZ states on-chip , 2022, 2211.15626.

[4]  M. Heck,et al.  Integration of GaAs waveguides on a silicon substrate for quantum photonic circuits. , 2022, Optics express.

[5]  Jeffrey Marshall Distillation of Indistinguishable Photons. , 2022, Physical review letters.

[6]  A. Wieck,et al.  Wafer-scale epitaxial modulation of quantum dot density , 2020, Nature Communications.

[7]  Alex E. Jones,et al.  Protocol for generation of high-dimensional entanglement from an array of non-interacting photon emitters , 2021, New Journal of Physics.

[8]  J. Carolan,et al.  Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology , 2021, Nature Nanotechnology.

[9]  D. Englund,et al.  High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture , 2021, Nature Photonics.

[10]  Alex E. Jones,et al.  Scheme for Universal High-Dimensional Quantum Computation with Linear Optics. , 2021, Physical review letters.

[11]  S. Paesani,et al.  Proposal for practical multidimensional quantum networks , 2021, Physical Review A.

[12]  A. Lita,et al.  Quantum circuits with many photons on a programmable nanophotonic chip , 2021, Nature.

[13]  Jian-Wei Pan,et al.  Quantum computational advantage using photons , 2020, Science.

[14]  L. Zimmermann,et al.  Comparison of cut-back method and optical backscatter reflectometry for wafer level waveguide characterization , 2020, 2020 IEEE 33rd International Conference on Microelectronic Test Structures (ICMTS).

[15]  Dirk Englund,et al.  Large-scale integration of artificial atoms in hybrid photonic circuits , 2020, Nature.

[16]  Erik Woodhead,et al.  Device-independent quantum key distribution with single-photon sources , 2018, Quantum.

[17]  Mark G. Thompson,et al.  Programmable four-photon graph states on a silicon chip , 2018, Nature Communications.

[18]  A. Wieck,et al.  Excitons in InGaAs quantum dots without electron wetting layer states , 2018, Communications Physics.

[19]  Yasuhiko Arakawa,et al.  Strongly Coupled Single-Quantum-Dot–Cavity System Integrated on a CMOS-Processed Silicon Photonic Chip , 2018, Physical Review Applied.

[20]  I. Walmsley,et al.  8×8 reconfigurable quantum photonic processor based on silicon nitride waveguides. , 2018, Optics express.

[21]  P. Lodahl,et al.  Numerical modeling of the coupling efficiency of single quantum emitters in photonic-crystal waveguides , 2017, 1704.08576.

[22]  A. Sørensen,et al.  Phonon Decoherence of Quantum Dots in Photonic Structures: Broadening of the Zero-Phonon Line and the Role of Dimensionality. , 2017, Physical review letters.

[23]  Sae Woo Nam,et al.  Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices , 2016, Nature Communications.

[24]  D. Englund,et al.  Solid-state single-photon emitters , 2016, Nature Photonics.

[25]  Nicolò Spagnolo,et al.  Suppression law of quantum states in a 3D photonic fast Fourier transform chip , 2016, Nature Communications.

[26]  Andreas Buchleitner,et al.  Stringent and efficient assessment of boson-sampling devices. , 2013, Physical review letters.

[27]  Markus Tiersch,et al.  Zero-transmission law for multiport beam splitters. , 2010, Physical review letters.

[28]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[29]  T. Ralph,et al.  Linear optical controlled- NOT gate in the coincidence basis , 2001, quant-ph/0112088.

[30]  Andrew G. White,et al.  On the measurement of qubits , 2001, quant-ph/0103121.

[31]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.