Ordering-Induced Elinvar Effect Over a Wide Temperature Range in a Spinodal Decomposition Titanium Alloy

[1]  C. Pao,et al.  A highly distorted ultraelastic chemically complex Elinvar alloy , 2022, Nature.

[2]  Yunzhi Wang,et al.  Reentrant strain glass transition in Ti-Ni-Cu shape memory alloy , 2022, Acta Materialia.

[3]  X. Ren,et al.  A lightweight strain glass alloy showing nearly temperature-independent low modulus and high strength , 2021, Nature Materials.

[4]  Haoliang Wang,et al.  Spinodal Decomposition Coupled with a Continuous Crystal Ordering in a Titanium Alloy , 2022, SSRN Electronic Journal.

[5]  R. Santamarta,et al.  Strain glass state in Ni-rich Ni-Ti-Zr shape memory alloys , 2021 .

[6]  H. Hosoda,et al.  Microstructure of α + β dual phase formed from isothermal α″phase via novel decomposition pathway in metastable β-Ti alloy , 2021, Journal of Alloys and Compounds.

[7]  A. Sahoo,et al.  Fe-Ni Invar alloys: A review , 2021 .

[8]  S. Li,et al.  Tuning Thermal Expansion by a Continuing Atomic Rearrangement Mechanism in a Multifunctional Titanium Alloy , 2021, SSRN Electronic Journal.

[9]  Kangjie Chu,et al.  Elinvar property of cold-rolled NiTi alloy , 2020 .

[10]  B. Jiang,et al.  Diffusional-displacive transformation in a metastable β titanium alloy and its strengthening effect , 2020 .

[11]  F. Mücklich,et al.  In Situ Analysis of the Phase Transformation Kinetics in the β-Water-Quenched Ti-5Al-5Mo-5V-3Cr-1Zr Alloy during Ageing after Fast Heating , 2020, Quantum Beam Science.

[12]  M. Bönisch,et al.  Routes to control diffusive pathways and thermal expansion in Ti-alloys , 2020, Scientific Reports.

[13]  H. Hosoda,et al.  Isothermal martensitic transformation behavior of Ti–Nb–O alloy , 2019 .

[14]  Shungui Zuo,et al.  Elinvar effect in severely-deformed Ti-50.8(at%)Ni thin belt , 2019, Materials Letters.

[15]  H. Hosoda,et al.  Microstructural Evolution in β‐Metastable Ti–Mo–Sn–Al Alloy During Isothermal Aging , 2019, Advanced Engineering Materials.

[16]  X. Ren,et al.  Strain glass in Ti50−xNi35+xCu15 shape memory alloys , 2019, Scripta Materialia.

[17]  K. Tsuchiya,et al.  Neutron diffraction study of temperature-dependent elasticity of B19′ NiTi---Elinvar effect and elastic softening , 2019, Acta Materialia.

[18]  A. Khachaturyan,et al.  A nano-embryonic mechanism for superelasticity, elastic softening, invar and elinvar effects in defected pre-transitional materials , 2019, Acta Materialia.

[19]  X. Ren,et al.  Strain Glass and Novel Properties , 2019, Shape Memory and Superelasticity.

[20]  Xinqing Zhao,et al.  Microstructural characterization of γ′ precipitates and their influence on the properties of Ni-Span C Elinvar alloy , 2019, Materials Characterization.

[21]  T. Lookman,et al.  Doping Effects of Point Defects in Shape Memory Alloys , 2018, Acta Materialia.

[22]  C. Park,et al.  Origin of superproperties of Ti-23Nb-1Ta-2Hf-O alloy , 2018, Materials Letters.

[23]  A. Khachaturyan,et al.  Nanoembryonic thermoelastic equilibrium and enhanced properties of defected pretransitional materials , 2018, npj Computational Materials.

[24]  J. Cairney,et al.  Continuous and reversible atomic rearrangement in a multifunctional titanium alloy , 2018, Materialia.

[25]  Jean-Pierre Kruth,et al.  Selective laser melting produced layer-structured NiTi shape memory alloys with high damping properties and Elinvar effect , 2018 .

[26]  Yunzhi Wang,et al.  Origin of the modulus anomaly over a wide temperature range of Mn0.70Fe0.25Cu0.05 alloy , 2017 .

[27]  J. Eckert,et al.  Giant thermal expansion and α-precipitation pathways in Ti-alloys , 2017, Nature Communications.

[28]  Yunzhi Wang,et al.  Elastically confined martensitic transformation at the nano-scale in a multifunctional titanium alloy , 2017 .

[29]  Moon J. Kim,et al.  Tracing the coupled atomic shear and shuffle for a cubic to a hexagonal crystal transition , 2017 .

[30]  Yunzhi Wang,et al.  Stabilizing the body centered cubic crystal in titanium alloys by a nano-scale concentration modulation , 2017 .

[31]  A. Ceguerra,et al.  Superelasticity and Tunable Thermal Expansion across a Wide Temperature Range , 2016 .

[32]  J. Zhang,et al.  Tunable elastic modulus in Mn-based antiferromagnetic shape memory alloys , 2016 .

[33]  Yunzhi Wang,et al.  A new mechanism for low and temperature-independent elastic modulus , 2015, Scientific Reports.

[34]  Haijun Wu,et al.  Strain glass transition in a multifunctional β-type Ti alloy , 2014, Scientific Reports.

[35]  A. Yavari,et al.  On the mechanical properties of TiNb based alloys , 2013 .

[36]  James C. Williams,et al.  Perspectives on Titanium Science and Technology , 2013 .

[37]  Z. Qin,et al.  Temperature compensating Elinvar character in Fe–Mn–Si alloys , 2012 .

[38]  V. Kain,et al.  Low temperature embrittlement of duplex stainless steel: Correlation between mechanical and electrochemical behavior , 2010 .

[39]  R. Yang,et al.  Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications. , 2007, Acta biomaterialia.

[40]  S. Kuramoto,et al.  Elastic properties of Gum Metal , 2006 .

[41]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[42]  K. Takashima,et al.  Titanium’s high-temperature elastic constants through the hcp–bcc phase transformation , 2004 .

[43]  Taketo Sakuma,et al.  Multifunctional Alloys Obtained via a Dislocation-Free Plastic Deformation Mechanism , 2003, Science.

[44]  B. Johansson,et al.  Origin of the Invar effect in iron–nickel alloys , 1999, Nature.

[45]  Hans-Rudolf Wenk,et al.  Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra , 1997 .

[46]  H. A. McKinstry,et al.  Very Low Thermal Expansion Coefficient Materials , 1989 .

[47]  M. Müller An antiferromagnetic temperature-compensating elastic Elinvar-alloy on the basis of Fe-Mn , 1989 .

[48]  K. Fukamichi,et al.  Invar and Elinvar Characteristics in Nonferromagnetic Cr–Co Dilute Binary Alloys , 1976 .

[49]  S. C. Lakkad Temperature Dependence of the Elastic Constants , 1971 .

[50]  CH. ED. Guillaume Invar and Its Applications , 1904, Nature.