Moving towards Adaptive Search in Digital Libraries

Search applications have become very popular over the last two decades, one of the main drivers being the advent of the Web. Nevertheless, searching on the Web is very different to searching on smaller, often more structured collections such as digital libraries, local Web sites, and intranets. One way of helping the searcher locating the right information for a specific information need in such a collection is by providing well-structured domain knowledge to assist query modification and navigation. There are two main challenges which we will both address in this chapter: acquiring the domain knowledge and adapting it automatically to the specific interests of the user community. We will outline how in digital libraries a domain model can automatically be acquired using search engine query logs and how it can be continuously updated using methods resembling ant colony behaviour.

[1]  Ricardo A. Baeza-Yates,et al.  Extracting semantic relations from query logs , 2007, KDD '07.

[2]  Stuart Macdonald,et al.  User Engagement in Research Data Curation , 2009, ECDL.

[3]  Brendan T. O'Connor,et al.  Cheap and Fast – But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks , 2008, EMNLP.

[4]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[5]  Michael Kluck,et al.  An Entry Vocabulary Module for a Political Science Test Collection , 2008, BIS.

[6]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[7]  Ricardo Baeza-Yates,et al.  Query-sets: using implicit feedback and query patterns to organize web documents , 2008, WWW.

[8]  Fabrizio Silvestri,et al.  The effects of time on query flow graph-based models for query suggestion , 2010, RIAO.

[9]  Daniel D. Garcia,et al.  Enhancing Digital Libraries with Social Navigation: The Case of Ensemble , 2010, ECDL.

[10]  Peter G. Anick Using terminological feedback for web search refinement: a log-based study , 2003, SIGIR.

[11]  Peiling Wang,et al.  Mining longitudinal web queries: Trends and patterns , 2003, J. Assoc. Inf. Sci. Technol..

[12]  Jaime Teevan,et al.  Information re-retrieval: repeat queries in Yahoo's logs , 2007, SIGIR.

[13]  Ryen W. White,et al.  Studying the use of popular destinations to enhance web search interaction , 2007, SIGIR.

[14]  Simon M. Lucas,et al.  Sentence-Level Attachment Prediction , 2010, IRFC.

[15]  Thorsten Joachims,et al.  Accurately Interpreting Clickthrough Data as Implicit Feedback , 2017 .

[16]  Robin Yeates Making Search Work: Implementing Web, Intranet and Enterprise Search , 2007, Program.

[17]  Filip Radlinski,et al.  Search Engines that Learn from Implicit Feedback , 2007, Computer.

[18]  Nicholas J. Belkin,et al.  Some(what) grand challenges for information retrieval , 2008, SIGF.

[19]  Nivio Ziviani,et al.  Using association rules to discover search engines related queries , 2003, Proceedings of the IEEE/LEOS 3rd International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices (IEEE Cat. No.03EX726).

[20]  Wojciech Rytter,et al.  Extracting Powers and Periods in a String from Its Runs Structure , 2010, SPIRE.

[21]  Udo Kruschwitz,et al.  AutoEval: An Evaluation Methodology for Evaluating Query Suggestions Using Query Logs , 2011, ECIR.

[22]  Ryen W. White,et al.  A study of interface support mechanisms for interactive information retrieval , 2006 .

[23]  Amanda Spink,et al.  Web Search: Public Searching of the Web , 2011, Information Science and Knowledge Management.

[24]  Udo Kruschwitz,et al.  Intelligent Document Retrieval - Exploiting Markup Structure , 2005, The Springer International Series on Information Retrieval.

[25]  Allan Hanbury,et al.  Advances in Multidisciplinary Retrieval, First Information Retrieval Facility Conference, IRFC 2010, Vienna, Austria, May 31, 2010. Proceedings , 2010, IRFC.

[26]  Amanda Spink,et al.  Defining a session on Web search engines: Research Articles , 2007 .

[27]  Carlo Strapparava,et al.  Adaptive Hypermedia and Adaptive Web-Based Systems, 5th International Conference, AH 2008, Hannover, Germany, July 29 - August 1, 2008. Proceedings , 2008, AH.

[28]  Mark Levene,et al.  Associating search and navigation behavior through log analysis , 2005, J. Assoc. Inf. Sci. Technol..

[29]  Nivio Ziviani,et al.  Discovering Search Engine Related Queries Using Association Rules , 2003, J. Web Eng..

[30]  Stuart C. Shapiro,et al.  Encyclopedia of artificial intelligence, vols. 1 and 2 (2nd ed.) , 1992 .

[31]  Karl Gyllstrom,et al.  A comparison of query and term suggestion features for interactive searching , 2009, SIGIR.

[32]  Chris Callison-Burch,et al.  Fast, Cheap, and Creative: Evaluating Translation Quality Using Amazon’s Mechanical Turk , 2009, EMNLP.

[33]  Anne N. De Roeck,et al.  Autopoiesis, the immune system, and adaptive information filtering , 2009, Natural Computing.

[34]  Udo Kruschwitz Intelligent Document Retrieval: Exploiting Markup Structure (The Information Retrieval Series) , 2005 .

[35]  Francesco Bonchi,et al.  Query suggestions using query-flow graphs , 2009, WSCD '09.

[36]  Amanda Spink,et al.  Web searcher interaction with the Dogpile.com metasearch engine , 2007, J. Assoc. Inf. Sci. Technol..

[37]  Udo Kruschwitz,et al.  Automatically Maintained Domain Knowledge: Initial Findings , 2009, ECIR.

[38]  Ryen W. White,et al.  A study of interface support mechanisms for interactive information retrieval , 2006, J. Assoc. Inf. Sci. Technol..

[39]  W. Bruce Croft,et al.  Deriving concept hierarchies from text , 1999, SIGIR '99.

[40]  Karen Markey Twenty-five years of end-user searching, Part 1: Research findings , 2007 .

[41]  Udo Kruschwitz,et al.  Incorporating Seasonality into Search Suggestions Derived from Intranet Query Logs , 2010, 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[42]  Barry Smyth,et al.  Google Shared. A Case-Study in Social Search , 2009, UMAP.

[43]  Udo Kruschwitz An Adaptable Search System for Collections of Partially Structured Documents , 2003, IEEE Intell. Syst..

[44]  Mike Thelwall,et al.  Handbook of Research on Web Log Analysis , 2009, J. Assoc. Inf. Sci. Technol..

[45]  Amanda Spink,et al.  Defining a session on Web search engines , 2007, J. Assoc. Inf. Sci. Technol..

[46]  Rosie Jones,et al.  Beyond the session timeout: automatic hierarchical segmentation of search topics in query logs , 2008, CIKM '08.

[47]  Olivia R. Liu Sheng,et al.  Analysis of the query logs of a Web site search engine , 2005, J. Assoc. Inf. Sci. Technol..

[48]  Mark Levene,et al.  Associating search and navigation behavior through log analysis: Research Articles , 2005 .

[49]  Fabrizio Silvestri,et al.  Mining Query Logs: Turning Search Usage Data into Knowledge , 2010, Found. Trends Inf. Retr..

[50]  Fredric C. Gey,et al.  Entry Vocabulary - a Technology to Enhance Digital Search , 2001, HLT.

[51]  Daqing He,et al.  Analysing Web Search Logs to Determine Session Boundaries for User-Oriented Learning , 2000, AH.

[52]  Benjamin Rey,et al.  Generating query substitutions , 2006, WWW '06.

[53]  Nivio Ziviani,et al.  Using association rules to discover related queries on search engines , 2003 .

[54]  Giorgio Maria Di Nunzio,et al.  i-TEL-u: A Query Suggestion Tool for Integrating Heterogeneous Contexts in a Digital Library , 2010, ECDL.

[55]  Ricardo A. Baeza-Yates,et al.  A Three Level Search Engine Index Based in Query Log Distribution , 2003, SPIRE.

[56]  Dong Zhou,et al.  Identifying Common User Behaviour in Multilingual Search Logs , 2009, CLEF.

[57]  Amanda Spink,et al.  Handbook of Research on Web Log Analysis , 2008 .

[58]  Peter Ingwersen,et al.  Developing a Test Collection for the Evaluation of Integrated Search , 2010, ECIR.

[59]  Dominic Widdows,et al.  A Graph Model for Unsupervised Lexical Acquisition , 2002, COLING.

[60]  Amanda Spink,et al.  Web searcher interaction with the Dogpile.com metasearch engine , 2007 .

[61]  Fabrizio Silvestri,et al.  Aging effects on query flow graphs for query suggestion , 2009, CIKM.