Modelling juvenile-mature wood transition in Scots pine (Pinus sylvestris L.) using nonlinear mixed-effects models
暂无分享,去创建一个
Rüdiger Mutz | Edith Guilley | Gérard Nepveu | Udo H. Sauter | Rüdiger Mutz | U. H. Sauter | G. Nepveu | E. Guilley
[1] B. Zobel,et al. Applied Forest Tree Improvement , 1984 .
[2] R. Krahmer,et al. Estimating the Age of Demarcation of Juvenile and Mature Wood in Douglas-Fir , 1993 .
[3] K. M. Bhat,et al. Characterisation of juvenile wood in teak , 2001, Wood Science and Technology.
[4] Timothy G. Gregoire,et al. Linear modelling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements , 1995 .
[5] J. F. Senft,et al. Juvenile wood effect in red alder: analysis of physical and mechanical data to delineate juvenile and mature wood zones. , 2000 .
[6] J. Hervé,et al. Modelling variability of within-ring density components in Quercus petraea Liebl. with mixed-effect models and simulating the influence of contrasting silvicultures on wood density , 1999 .
[7] S. Zhang,et al. Defining the transition from earlywood to latewood in black spruce based on intra-ring wood density profiles from X-ray densitometry , 2002 .
[8] Jonathan D. Cryer,et al. Time Series Analysis , 1986 .
[9] Fritz Hans Schweingruber,et al. Der Jahrring: Standort, Methodik, Zeit und Klima in die Dendrochronologie , 1983 .
[10] L. Skovgaard. NONLINEAR MODELS FOR REPEATED MEASUREMENT DATA. , 1996 .
[11] Y. Hirakawa,et al. Effects of radial growth rate on selected indices for juvenile and mature wood of the Japanese larch , 2000, Journal of Wood Science.
[12] Frédéric Mothe,et al. Modelling wood density in European oak (Quercus petraea and Quercus robur) and simulating the silvicultural influence , 1993 .
[13] A. J. Panshin,et al. Textbook of Wood Technology , 1964 .
[14] Céline Meredieu,et al. Modelling branchiness of Corsican pine with mixed-effect models (Pinus nigra Arnold ssp. laricio (Poiret) Maire) , 1998 .
[15] H. Goldstein. Nonlinear multilevel models, with an application to discrete response data , 1991 .
[16] D. Bates,et al. Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model , 1995 .
[17] Russell D. Wolfinger,et al. Fitting Nonlinear Mixed Models with the New NLMIXED Procedure , 1999 .
[18] Marie Davidian,et al. Nonlinear Models for Repeated Measurement Data , 1995 .
[19] H. Polge. Établissement des courbes de variation de la densité du bois par exploration densitométrique de radiographies d'échantillons prélevés à la tarière sur des arbres vivants : applications dans les domaines Technologique et Physiologique , 1966 .
[20] D. Bates,et al. Nonlinear mixed effects models for repeated measures data. , 1990, Biometrics.
[21] R. Wimmer,et al. High-resolution analysis of radial growth and wood density in Eucalyptus nitens, grown under different irrigation regimes , 2002 .
[22] F. Mothe,et al. Analyse microdensitométrique appliquée au bois : méthode de traitement des données utilisée à l'Inra-ERQB (programme Cerd) , 1998 .
[23] D. Maguire,et al. Predicting branch diameters on second-growth Douglas-fir from tree-level descriptors , 1999 .
[24] T. Mörling. Evaluation of annual ring width and ring density development following fertilisation and thinning of Scots pine , 2002 .
[25] Russell D. Wolfinger,et al. Laplace's approximation for nonlinear mixed models. , 1993 .
[26] A. J. Panshin,et al. Textbook of wood technology : structure, identification, properties, and uses of the commercial woods of the United States and Canada , 1980 .
[27] H. Polge. Fifteen years of wood radiation densitometry , 1978, Wood Science and Technology.
[28] Lars Wilhelmsson,et al. Models for Predicting Wood Properties in Stems of Picea abies and Pinus sylvestris in Sweden , 2002 .
[29] A. Gallant,et al. Nonlinear Statistical Models , 1988 .