Structure of the Human Signal Peptidase Complex Reveals the Determinants for Signal Peptide Cleavage

The signal peptidase complex (SPC) is an essential membrane complex in the endoplasmic reticulum (ER), where it removes signal peptides (SPs) from a large variety of secretory pre-proteins with exquisite specificity. Although the determinants of this process have been established empirically, the molecular details of SP recognition and removal remain elusive. Here, we show that the human SPC exists in two functional paralogs with distinct proteolytic subunits. We determined the atomic structures of both paralogs using electron cryo-microscopy and structural proteomics. The active site is formed by a catalytic triad and abuts the ER membrane, where a transmembrane window collectively formed by all subunits locally thins the bilayer. This unique architecture generates specificity for thousands of SPs based on the length of their hydrophobic segments.

[1]  Bart M. H. Bruininks,et al.  Martini 3: a general purpose force field for coarse-grained molecular dynamics , 2021, Nature Methods.

[2]  Peter B. McGarvey,et al.  UniProt: the universal protein knowledgebase in 2021 , 2020, Nucleic Acids Res..

[3]  Ashwin Chari,et al.  Atomic-resolution protein structure determination by cryo-EM , 2020, Nature.

[4]  M. Yi,et al.  Delayed by Design: Role of Suboptimal Signal Peptidase Processing of Viral Structural Protein Precursors in Flaviviridae Virus Assembly , 2020, Viruses.

[5]  C. Robinson,et al.  Structural Basis of Tail-Anchored Membrane Protein Biogenesis by the GET Insertase Complex. , 2020, Molecular cell.

[6]  A. Burlingame,et al.  An ER translocon for multi-pass membrane protein biogenesis , 2020, eLife.

[7]  Takanori Nakane,et al.  Single-particle cryo-EM at atomic resolution , 2020, Nature.

[8]  R. M. Voorhees,et al.  Structural basis for membrane insertion by the human ER membrane protein complex , 2020, Science.

[9]  G. Hummer,et al.  Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex , 2020, Science.

[10]  H. Risselada,et al.  Membrane Thinning Induces Sorting of Lipids and the Amphipathic Lipid Packing Sensor (ALPS) Protein Motif , 2020, Frontiers in Physiology.

[11]  G. Saracco,et al.  How paired PSII–LHCII supercomplexes mediate the stacking of plant thylakoid membranes unveiled by structural mass-spectrometry , 2020, Nature Communications.

[12]  F. Förster,et al.  A clearer picture of the ER translocon complex , 2020, Journal of Cell Science.

[13]  P. Carmeliet,et al.  PHD1 controls muscle mTORC1 in a hydroxylation-independent manner by stabilizing leucyl tRNA synthetase , 2020, Nature Communications.

[14]  Jianyi Yang,et al.  Improved protein structure prediction using predicted interresidue orientations , 2019, Proceedings of the National Academy of Sciences.

[15]  S. Raunser,et al.  SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM , 2019, Communications Biology.

[16]  Søren Brunak,et al.  A Brief History of Protein Sorting Prediction , 2019, The Protein Journal.

[17]  D. Ding,et al.  SMARCAD1 ATPase activity is required to silence endogenous retroviruses in embryonic stem cells , 2019, Nature Communications.

[18]  Ole Winther,et al.  NetSurfP‐2.0: Improved prediction of protein structural features by integrated deep learning , 2019, Proteins.

[19]  Gabriel C. Lander,et al.  High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM , 2019, Nature Communications.

[20]  G. Lander,et al.  High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM , 2019, Nature Communications.

[21]  Richard A. Scheltema,et al.  PhoX: An IMAC-Enrichable Cross-Linking Reagent , 2019, bioRxiv.

[22]  Dimitry Tegunov,et al.  Real-time cryo–EM data pre-processing with Warp , 2018, Nature Methods.

[23]  Felice C Lightstone,et al.  Capturing Phase Behavior of Ternary Lipid Mixtures with a Refined Martini Coarse-Grained Force Field. , 2018, Journal of chemical theory and computation.

[24]  A. Heck,et al.  Efficient and robust proteome-wide approaches for cross-linking mass spectrometry , 2018, Nature Protocols.

[25]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[26]  Ole Winther,et al.  NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning , 2018, bioRxiv.

[27]  Randy J Read,et al.  Real-space refinement in PHENIX for cryo-EM and crystallography , 2018, bioRxiv.

[28]  Jesper V Olsen,et al.  Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics. , 2018, Journal of proteome research.

[29]  Conrad C. Huang,et al.  UCSF ChimeraX: Meeting modern challenges in visualization and analysis , 2018, Protein science : a publication of the Protein Society.

[30]  G. von Heijne,et al.  Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide , 2017, eLife.

[31]  Dongsheng Li,et al.  Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3 , 2017, Nature.

[32]  G. Bonamy,et al.  The Natural Product Cavinafungin Selectively Interferes with Zika and Dengue Virus Replication by Inhibition of the Host Signal Peptidase. , 2017, Cell reports.

[33]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[34]  Friedrich Förster,et al.  Dissecting the molecular organization of the translocon-associated protein complex , 2017, Nature Communications.

[35]  David S. Lorberbaum,et al.  Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development , 2017, eLife.

[36]  B. L. de Groot,et al.  CHARMM36m: an improved force field for folded and intrinsically disordered proteins , 2016, Nature Methods.

[37]  T. Pierson,et al.  A CRISPR screen defines a signal peptide processing pathway required by flaviviruses , 2016, Nature.

[38]  L. Konermann,et al.  Collision-Induced Dissociation of Electrosprayed Protein Complexes: An All-Atom Molecular Dynamics Model with Mobile Protons. , 2016, The journal of physical chemistry. B.

[39]  Itay Mayrose,et al.  ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules , 2016, Nucleic Acids Res..

[40]  Ingmar Schoen,et al.  Improved Side Chain Dynamics in MARTINI Simulations of Protein-Lipid Interfaces. , 2016, Journal of chemical theory and computation.

[41]  Helgi I. Ingólfsson,et al.  Martini straight: Boosting performance using a shorter cutoff and GPUs , 2016, Comput. Phys. Commun..

[42]  Hidde Ploegh,et al.  Crystal structure of a substrate-engaged SecY protein-translocation channel , 2016, Nature.

[43]  R. Hegde,et al.  Structure of the Sec61 channel opened by a signal sequence , 2016, Science.

[44]  E. Baker,et al.  Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization , 2016, IUCrJ.

[45]  Alexander D. MacKerell,et al.  CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field , 2015, Journal of chemical theory and computation.

[46]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[47]  F. Förster,et al.  Structure of the native Sec61 protein-conducting channel , 2015, Nature Communications.

[48]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[49]  L. Levin,et al.  Biodiversity on the Rocks: Macrofauna Inhabiting Authigenic Carbonate at Costa Rica Methane Seeps , 2015, PloS one.

[50]  Helgi I. Ingólfsson,et al.  Computational Lipidomics with insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations. , 2015, Journal of chemical theory and computation.

[51]  Alexey Drozdetskiy,et al.  JPred4: a protein secondary structure prediction server , 2015, Nucleic Acids Res..

[52]  Erik G Marklund,et al.  Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. , 2015, Analytical chemistry.

[53]  Leandro Martínez,et al.  Automatic Identification of Mobile and Rigid Substructures in Molecular Dynamics Simulations and Fractional Structural Fluctuation Analysis , 2015, PloS one.

[54]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[55]  Doris Chen,et al.  Megabase-scale deletion using CRISPR/Cas9 to generate a fully haploid human cell line , 2014, Genome research.

[56]  Matthias Mann,et al.  The Q Exactive HF, a Benchtop Mass Spectrometer with a Pre-filter, High-performance Quadrupole and an Ultra-high-field Orbitrap Analyzer* , 2014, Molecular & Cellular Proteomics.

[57]  M. Paetzel Structure and mechanism of Escherichia coli type I signal peptidase. , 2014, Biochimica et biophysica acta.

[58]  Yoshiki Tanaka,et al.  Structural basis of Sec-independent membrane protein insertion by YidC , 2014, Nature.

[59]  Siewert J Marrink,et al.  Going Backward: A Flexible Geometric Approach to Reverse Transformation from Coarse Grained to Atomistic Models. , 2014, Journal of chemical theory and computation.

[60]  Friedrich Förster,et al.  Structure of the mammalian oligosaccharyl-transferase complex in the native ER protein translocon , 2014, Nature Communications.

[61]  Andrew Camilli,et al.  Gene Fitness Landscapes of Vibrio cholerae at Important Stages of Its Life Cycle , 2013, PLoS pathogens.

[62]  M. Senko,et al.  Novel parallelized quadrupole/linear ion trap/Orbitrap tribrid mass spectrometer improving proteome coverage and peptide identification rates. , 2013, Analytical chemistry.

[63]  Y. Matsuura,et al.  Signal Peptidase Complex Subunit 1 Participates in the Assembly of Hepatitis C Virus through an Interaction with E2 and NS2 , 2013, PLoS pathogens.

[64]  W F Drew Bennett,et al.  Improved Parameters for the Martini Coarse-Grained Protein Force Field. , 2013, Journal of chemical theory and computation.

[65]  S. Walker,et al.  Signal Peptidase (Eukaryote) , 2013 .

[66]  B. Dobberstein,et al.  Post‑Targeting Functions of Signal Peptides , 2013 .

[67]  Kris Gevaert,et al.  N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB , 2012, Proceedings of the National Academy of Sciences.

[68]  P. Tomasec,et al.  Human Cytomegalovirus UL40 Signal Peptide Regulates Cell Surface Expression of the NK Cell Ligands HLA-E and gpUL18 , 2012, The Journal of Immunology.

[69]  Sjors H.W. Scheres,et al.  A Bayesian View on Cryo-EM Structure Determination , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[70]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[71]  S. Munro,et al.  A Comprehensive Comparison of Transmembrane Domains Reveals Organelle-Specific Properties , 2010, Cell.

[72]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[73]  B. Dobberstein,et al.  The Drosophila Crumbs signal peptide is unusually long and is a substrate for signal peptide peptidase. , 2010, European journal of cell biology.

[74]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[75]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[76]  Sébastien Moretti,et al.  Bgee: Integrating and Comparing Heterogeneous Transcriptome Data Among Species , 2008, DILS.

[77]  D. Hazuda,et al.  Localization and Membrane Topology of Coronavirus Nonstructural Protein 4: Involvement of the Early Secretory Pathway in Replication , 2007, Journal of Virology.

[78]  Yong-Bin Kim,et al.  ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry , 2007, Nucleic Acids Res..

[79]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[80]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[81]  I. Gut,et al.  Non-random, individual-specific methylation profiles are present at the sixth CTCF binding site in the human H19/IGF2 imprinting control region. , 2006, Nucleic Acids Research.

[82]  G. Heijne Membrane-protein topology , 2006, Nature Reviews Molecular Cell Biology.

[83]  R. Hegde,et al.  The surprising complexity of signal sequences. , 2006, Trends in biochemical sciences.

[84]  D. Fairlie,et al.  Proteases universally recognize beta strands in their active sites. , 2005, Chemical reviews.

[85]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[86]  M. Page,et al.  Crystallographic and Biophysical Analysis of a Bacterial Signal Peptidase in Complex with a Lipopeptide-based Inhibitor* , 2004, Journal of Biological Chemistry.

[87]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[88]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[89]  Graham Warren,et al.  Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[90]  L. Van Kaer,et al.  Genetic Complementation in Yeast Reveals Functional Similarities between the Catalytic Subunits of Mammalian Signal Peptidase Complex* , 2003, Journal of Biological Chemistry.

[91]  J. Berger,et al.  Structure and Function of the Conserved Core of Histone Deposition Protein Asf1 , 2003, Current Biology.

[92]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[93]  E. Williams,et al.  Origin of asymmetric charge partitioning in the dissociation of gas-phase protein homodimers. , 2003, Journal of the American Chemical Society.

[94]  R. Cattaneo,et al.  Amino-Terminal Precursor Sequence Modulates Canine Distemper Virus Fusion Protein Function , 2002, Journal of Virology.

[95]  G. von Heijne,et al.  Cleavage of a tail‐anchored protein by signal peptidase , 2002, FEBS letters.

[96]  M. Paetzel,et al.  Signal peptidases. , 2002, Chemical reviews.

[97]  J. Killian,et al.  Effect of nonbilayer lipids on membrane binding and insertion of the catalytic domain of leader peptidase. , 2001, Biochemistry.

[98]  K. Kamitani,et al.  Purification and Characterization of Hen Oviduct N "-Acetyltransferase " , 2001 .

[99]  E. Hartmann,et al.  Interactions between Spc2p and Other Components of the Endoplasmic Reticulum Translocation Sites of the YeastSaccharomyces cerevisiae * , 2000, The Journal of Biological Chemistry.

[100]  N. Green,et al.  The Catalytic Mechanism of Endoplasmic Reticulum Signal Peptidase Appears to Be Distinct from Most Eubacterial Signal Peptidases* , 1999, The Journal of Biological Chemistry.

[101]  M. Paetzel,et al.  Crystal structure of a bacterial signal peptidase in complex with a β-lactam inhibitor , 1998, Nature.

[102]  T. Rapoport,et al.  The β Subunit of the Sec61 Complex Facilitates Cotranslational Protein Transport and Interacts with the Signal Peptidase during Translocation , 1998, The Journal of cell biology.

[103]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[104]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[105]  E. Hartmann,et al.  The Yeast SPC22/23 Homolog Spc3p Is Essential for Signal Peptidase Activity* , 1997, The Journal of Biological Chemistry.

[106]  N. Green,et al.  In Addition to SEC11, a Newly Identified Gene,SPC3, Is Essential for Signal Peptidase Activity in the Yeast Endoplasmic Reticulum* , 1997, The Journal of Biological Chemistry.

[107]  E. Hartmann,et al.  Structurally Related Spc1p and Spc2p of Yeast Signal Peptidase Complex Are Functionally Distinct* , 1996, The Journal of Biological Chemistry.

[108]  E. Hartmann,et al.  The Homologue of Mammalian SPC12 Is Important for Efficient Signal Peptidase Activity in Saccharomyces cerevisiae* , 1996, The Journal of Biological Chemistry.

[109]  E. Hartmann,et al.  Membrane Topology of the 12- and the 25-kDa Subunits of the Mammalian Signal Peptidase Complex (*) , 1996, The Journal of Biological Chemistry.

[110]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[111]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[112]  G von Heijne,et al.  The COOH-terminal ends of internal signal and signal-anchor sequences are positioned differently in the ER translocase , 1994, Journal of Cell Biology.

[113]  R. Dalbey,et al.  A serine and a lysine residue implicated in the catalytic mechanism of the Escherichia coli leader peptidase. , 1993, The Journal of biological chemistry.

[114]  T. Rapoport,et al.  Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane , 1993, Cell.

[115]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[116]  C. Nicchitta,et al.  Membrane topology and biogenesis of eukaryotic signal peptidase. , 1993, The Journal of biological chemistry.

[117]  Y. Fujiyoshi,et al.  Functional signal peptide reduces bilayer thickness of phosphatidylcholine liposomes. , 1992, Biochemistry.

[118]  S. Bron,et al.  Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. , 1992, The EMBO journal.

[119]  G. Blobel,et al.  Two subunits of the canine signal peptidase complex are homologous to yeast SEC11 protein. , 1990, The Journal of biological chemistry.

[120]  G. Vonheijne The signal peptide. , 1990 .

[121]  G. von Heijne The signal peptide. , 1990, The Journal of membrane biology.

[122]  F. Sakiyama,et al.  Purification and characterization of hen oviduct N alpha-acetyltransferase. , 1989, Journal of Biological Chemistry.

[123]  M. Uchida,et al.  Is phospholipid a required cofactor for the activity of mammalian signal peptidase? , 1986, FEBS letters.

[124]  G. Blobel,et al.  Purification of microsomal signal peptidase as a complex. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[125]  G. von Heijne,et al.  Signal sequences: The limits of variation , 1985 .

[126]  K. Walsh,et al.  Hen oviduct signal peptidase is an integral membrane protein. , 1983, The Journal of biological chemistry.

[127]  R. Jackson [62] Quantitative assay for signal peptidase☆ , 1983 .

[128]  W. L. Jorgensen Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water , 2002 .

[129]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[130]  G. Blobel,et al.  POST‐TRANSLATIONAL PROCESSING OF FULL‐LENGTH PRESECRETORY PROTEINS WITH CANINE PANCREATIC SIGNAL PEPTIDASE , 1980, Annals of the New York Academy of Sciences.

[131]  B. Dobberstein,et al.  Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma , 1975, The Journal of cell biology.

[132]  G. Palade,et al.  Intracellular aspects of the process of protein synthesis. , 1975, Science.