Beetle Swarm Optimization Algorithm: Theory and Application

In this paper, a new meta-heuristic algorithm, called beetle swarm optimization algorithm, is proposed by enhancing the performance of swarm optimization through beetle foraging principles. The performance of 23 benchmark functions is tested and compared with widely used algorithms, including particle swarm optimization algorithm, genetic algorithm (GA) and grasshopper optimization algorithm . Numerical experiments show that the beetle swarm optimization algorithm outperforms its counterparts. Besides, to demonstrate the practical impact of the proposed algorithm, two classic engineering design problems, namely, pressure vessel design problem and himmelblaus optimization problem, are also considered and the proposed beetle swarm optimization algorithm is shown to be competitive in those applications.

[1]  Konstantinos G. Margaritis,et al.  On benchmarking functions for genetic algorithms , 2001, Int. J. Comput. Math..

[2]  U. Kaupp Olfactory signalling in vertebrates and insects: differences and commonalities , 2010, Nature Reviews Neuroscience.

[3]  Yongquan Zhou,et al.  A Novel Global Convergence Algorithm: Bee Collecting Pollen Algorithm , 2008, ICIC.

[4]  Xin-She Yang,et al.  Binary bat algorithm , 2013, Neural Computing and Applications.

[5]  J. Borden,et al.  A review of the chemical ecology of the Cerambycidae (Coleoptera) , 2004, CHEMOECOLOGY.

[6]  N. Gompel,et al.  Smells like evolution: the role of chemoreceptor evolution in behavioral change , 2013, Current Opinion in Neurobiology.

[7]  Tapabrata Ray,et al.  A socio-behavioural simulation model for engineering design optimization , 2002 .

[8]  Han-Lin Li,et al.  A GLOBAL APPROACH FOR NONLINEAR MIXED DISCRETE PROGRAMMING IN DESIGN OPTIMIZATION , 1993 .

[9]  Siamak Talatahari,et al.  An improved ant colony optimization for constrained engineering design problems , 2010 .

[10]  Berthold Schneider,et al.  Simulationsmethoden in der Medizin und Biologie , 1978 .

[11]  Paul Tseng,et al.  A coordinate gradient descent method for nonsmooth separable minimization , 2008, Math. Program..

[12]  A. Kaveh,et al.  A novel heuristic optimization method: charged system search , 2010 .

[13]  Barry Webster,et al.  A Local Search Optimization Algorithm Based on Natural Principles of Gravitation , 2003, IKE.

[14]  Xiaodong Wu,et al.  Small-World Optimization Algorithm for Function Optimization , 2006, ICNC.

[15]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[16]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[17]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[18]  E. Sandgren,et al.  Nonlinear Integer and Discrete Programming in Mechanical Design Optimization , 1990 .

[19]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[20]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[21]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[22]  Jung-Fa Tsai,et al.  Global optimization for signomial discrete programming problems in engineering design , 2002 .

[23]  Richard A. Formato,et al.  Central Force Optimization and NEOs - First Cousins? , 2010, J. Multiple Valued Log. Soft Comput..

[24]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[25]  Mitsuo Gen,et al.  Genetic algorithms and engineering design , 1997 .

[26]  Thomas A. Runkler,et al.  Wasp Swarm Algorithm for Dynamic MAX-SAT Problems , 2007, ICANNGA.

[27]  Carlos A. Coello Coello,et al.  Hybridizing a genetic algorithm with an artificial immune system for global optimization , 2004 .

[28]  Shuai Li,et al.  Beetle Antennae Search without Parameter Tuning (BAS-WPT) for Multi-objective Optimization , 2017, Filomat.

[29]  Andrew Lewis,et al.  Grasshopper Optimisation Algorithm: Theory and application , 2017, Adv. Eng. Softw..

[30]  John Langford,et al.  Sparse Online Learning via Truncated Gradient , 2008, NIPS.

[31]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex Adaptive Systems.

[32]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[33]  Hamed Shah-Hosseini,et al.  Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation , 2011, Int. J. Comput. Sci. Eng..

[34]  Shang He,et al.  An improved particle swarm optimizer for mechanical design optimization problems , 2004 .

[35]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[36]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .

[37]  A. Kaveh,et al.  A new meta-heuristic method: Ray Optimization , 2012 .

[38]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[39]  S. N. Kramer,et al.  An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design , 1994 .

[40]  Hussein A. Abbass,et al.  MBO: marriage in honey bees optimization-a Haplometrosis polygynous swarming approach , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[41]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[42]  Kalyanmoy Deb,et al.  GeneAS: A Robust Optimal Design Technique for Mechanical Component Design , 1997 .

[43]  Jiang Jianjun,et al.  A Dolphin Partner Optimization , 2009, 2009 WRI Global Congress on Intelligent Systems.

[44]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[45]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[46]  Bilal Alatas,et al.  ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization , 2011, Expert Syst. Appl..

[47]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[48]  Shuai Li,et al.  BAS: Beetle Antennae Search Algorithm for Optimization Problems , 2017, ArXiv.

[49]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[50]  Xin-She Yang Test Problems in Optimization , 2010, 1008.0549.

[51]  George G. Dimopoulos,et al.  Mixed-variable engineering optimization based on evolutionary and social metaphors , 2007 .

[52]  K. Lee,et al.  A new metaheuristic algorithm for continuous engineering optimization : harmony search theory and practice , 2005 .

[53]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[54]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[55]  A. Mucherino,et al.  Monkey search: a novel metaheuristic search for global optimization , 2007 .

[56]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[57]  Mohamed Cheriet,et al.  Curved Space Optimization: A Random Search based on General Relativity Theory , 2012, ArXiv.

[58]  Abdolreza Hatamlou,et al.  Black hole: A new heuristic optimization approach for data clustering , 2013, Inf. Sci..

[59]  Alireza Askarzadeh,et al.  Bird mating optimizer: An optimization algorithm inspired by bird mating strategies , 2014, Commun. Nonlinear Sci. Numer. Simul..

[60]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[61]  Stephen B. Wicker,et al.  Termite: a swarm intelligent routing algorithm for mobile wireless ad-hoc networks , 2005 .

[62]  Andrew Lewis,et al.  S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization , 2013, Swarm Evol. Comput..

[63]  Wen-Tsao Pan,et al.  A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example , 2012, Knowl. Based Syst..

[64]  S. Wu,et al.  GENETIC ALGORITHMS FOR NONLINEAR MIXED DISCRETE-INTEGER OPTIMIZATION PROBLEMS VIA META-GENETIC PARAMETER OPTIMIZATION , 1995 .