Progress in the lattice evaluation of entanglement entropy of three-dimensional Yang-Mills theories and holographic bulk reconstruction

A construction of a gravity dual to a physical gauge theory requires confronting data. We establish a proof-of-concept for precision holography, i.e., the explicit reconstruction of the dual background metric functions directly from the entanglement entropy (EE) of strip subregions that we extract from pure glue Yang-Mills theory discretized on a lattice. Our main focus is on a three-dimensional Euclidean SU(2) theory in the deconfining phase. We find that the dependencies of the EE on the strip width come with fractional power laws, behaviors innate to a geometry induced by a stack of D2-branes. Holographic EE further suggests, and we find evidence for, that the scaling of the thermal entropy with temperature is to power 7/3 and that it approaches smoothly the critical point, consistent with black hole thermodynamics and that the theory belongs in the same universality class as the two-dimensional critical Ising model, respectively. In addition, we provide frugal results on the potential between quenched quarks by the computation of the Polyakov loop correlators on the lattice. Holographic arguments pique curiosity in the substratum of Debye screening at strong coupling.

[1]  A. Bulgarelli,et al.  Entanglement entropy from non-equilibrium Monte Carlo simulations , 2023, Journal of High Energy Physics.

[2]  S. Caron-Huot Holographic cameras: an eye for the bulk , 2022, Journal of High Energy Physics.

[3]  K. Rummukainen,et al.  Holographic spacetime from lattice Yang-Mills theory , 2022, EPJ Web of Conferences.

[4]  K. Rummukainen,et al.  Improved lattice method for determining entanglement measures in SU(N) gauge theories , 2022, Proceedings of The 39th International Symposium on Lattice Field Theory — PoS(LATTICE2022).

[5]  Peng Liu,et al.  Learning the black hole metric from holographic conductivity , 2022, Physical Review D.

[6]  P. Hauke,et al.  Entanglement witnessing for lattice gauge theories , 2022, Journal of High Energy Physics.

[7]  M. Nowak,et al.  Spatial entanglement in two-dimensional QCD: Renyi and Ryu-Takayanagi entropies , 2022, Physical Review D.

[8]  Chi‐Ok Hwang,et al.  Dual geometry of entanglement entropy via deep learning , 2022, Physical Review D.

[9]  Norihiro Iizuka,et al.  Defining entanglement without tensor factoring: A Euclidean hourglass prescription , 2021, Physical Review D.

[10]  K. Hashimoto,et al.  Bulk reconstruction of metrics inside black holes by complexity , 2021, Journal of High Energy Physics.

[11]  N. Jokela,et al.  Quantum information probes of charge fractionalization in large-N gauge theories , 2021, Journal of High Energy Physics.

[12]  D. Schaich,et al.  Three-dimensional super-Yang-Mills theory on the lattice and dual black branes , 2020, 2010.00026.

[13]  K. Hashimoto Building bulk from Wilson loops , 2020, Progress of Theoretical and Experimental Physics.

[14]  N. Jokela,et al.  Towards precision holography , 2020, Physical Review D.

[15]  K. Hashimoto,et al.  Neural ordinary differential equation and holographic quantum chromodynamics , 2020, Mach. Learn. Sci. Technol..

[16]  K. Hashimoto,et al.  Deep learning and AdS/QCD , 2020, Physical Review D.

[17]  G. Horowitz,et al.  Bulk reconstruction of metrics with a compact space asymptotically , 2020, Journal of High Energy Physics.

[18]  T. Takayanagi,et al.  Looking at shadows of entanglement wedges , 2019, Progress of Theoretical and Experimental Physics.

[19]  William Donnelly,et al.  Entanglement entropy and the large N expansion of two-dimensional Yang-Mills theory , 2019, Journal of High Energy Physics.

[20]  N. Jokela,et al.  Notes on entanglement wedge cross sections , 2019, Journal of High Energy Physics.

[21]  Cynthia Keeler,et al.  Towards bulk metric reconstruction from extremal area variations , 2019, Classical and Quantum Gravity.

[22]  A. Schafer,et al.  Lattice study of Rényi entanglement entropy in SU(Nc) lattice Yang-Mills theory with Nc=2 , 3, 4 , 2018, Physical Review D.

[23]  Koji Hashimoto,et al.  Deep learning and holographic QCD , 2018, Physical Review D.

[24]  Djordje Radicevic,et al.  Comments on defining entanglement entropy , 2018, Nuclear Physics B.

[25]  T. Takayanagi,et al.  Entanglement of purification through holographic duality , 2018 .

[26]  Akinori Tanaka,et al.  Deep learning and the AdS/CFT correspondence , 2018, Physical Review D.

[27]  V. Nair,et al.  Gauge-invariant Variables and Entanglement Entropy , 2016, 1701.00014.

[28]  Aitor Lewkowycz,et al.  Deriving covariant holographic entanglement , 2016, 1607.07506.

[29]  A. Rothkopf,et al.  Complex heavy-quark potential and Debye mass in a gluonic medium from lattice QCD , 2016, 1607.04049.

[30]  Netta Engelhardt,et al.  Towards a reconstruction of general bulk metrics , 2016, 1605.01070.

[31]  V. Zakharov,et al.  Entanglement in Four-Dimensional SU(3) Gauge Theory , 2015, 1512.01334.

[32]  S. Trivedi,et al.  Aspects of entanglement entropy for gauge theories , 2015, 1510.07455.

[33]  William Witczak-Krempa,et al.  Universality of Corner Entanglement in Conformal Field Theories. , 2015, Physical review letters.

[34]  H. Tasaki,et al.  On the definition of entanglement entropy in lattice gauge theories , 2015, 1502.04267.

[35]  O. Kaczmarek,et al.  Static quark-antiquark potential in the quark-gluon plasma from lattice QCD. , 2014, Physical review letters.

[36]  M. Headrick,et al.  Holographic holes and differential entropy , 2014, 1408.4770.

[37]  Michael Spillane Constructing Space From Entanglement Entropy , 2013, 1311.4516.

[38]  V. Balasubramanian,et al.  Bulk curves from boundary data in holography , 2013, 1310.4204.

[39]  Aitor Lewkowycz,et al.  Quantum corrections to holographic entanglement entropy , 2013, 1307.2892.

[40]  A. V. Niekerk,et al.  Entanglement Entropy in NonConformal Holographic Theories , 2011, 1108.2294.

[41]  V. Zakharov,et al.  Quantum entanglement in SU(3) lattice Yang-Mills theory at zero and finite temperatures , 2011, 1104.1011.

[42]  D. Lowe,et al.  Constructing local bulk observables in interacting AdS/CFT , 2011, 1102.2910.

[43]  Samuel Bilson Extracting spacetimes using the AdS/CFT conjecture. Part II , 2010, 1012.1812.

[44]  M. Stahlhofen The QCD static potential in D<4 dimensions at weak coupling , 2010, 1009.4237.

[45]  V. Zakharov,et al.  Entanglement entropy of SU(3) Yang-Mills theory , 2009, 0911.2596.

[46]  L. Smekal,et al.  SU(2) lattice gauge theory in 2+1 dimensions: Critical couplings from twisted boundary conditions and universality , 2009, 0908.4030.

[47]  Tadashi Takayanagi,et al.  Holographic entanglement entropy: an overview , 2009, 0905.0932.

[48]  A. Velytsky Entanglement entropy in SU(N) gauge theory , 2008, 0809.4502.

[49]  J. Albacete Heavy Quark Potential at Finite Temperature in AdS/CFT , 2008, 0908.2541.

[50]  P. Buividovich,et al.  Entanglement entropy in gauge theories and the holographic principle for electric strings , 2008, 0806.3376.

[51]  P. Buividovich,et al.  Numerical study of entanglement entropy in SU(2) lattice gauge theory , 2008, 0802.4247.

[52]  A. Velytsky Entanglement entropy in d+1 SU(N) gauge theory , 2008, 0801.4111.

[53]  N. Dass,et al.  Subleading properties of the QCD flux-tube in 3-d lattice gauge theory , 2007, 0709.4170.

[54]  I. Klebanov,et al.  Entanglement as a probe of confinement , 2007, 0709.2140.

[55]  J. Hammersley Numerical metric extraction in AdS/CFT , 2007, 0705.0159.

[56]  N. Dass,et al.  Continuum limit of string formation in 3d SU(2) LGT , 2007, hep-lat/0702019.

[57]  T. Takayanagi,et al.  AdS bubbles, entropy and closed string tachyons , 2006, hep-th/0611035.

[58]  D. Lowe,et al.  Holographic representation of local bulk operators , 2006, hep-th/0606141.

[59]  T. Takayanagi,et al.  Aspects of Holographic Entanglement Entropy , 2006, hep-th/0605073.

[60]  T. Takayanagi,et al.  Holographic Derivation of Entanglement Entropy from AdS/CFT , 2006, hep-th/0603001.

[61]  H. Casini,et al.  Entanglement and alpha entropies for a massive scalar field in two dimensions , 2005, cond-mat/0511014.

[62]  J. Cardy,et al.  ENTANGLEMENT ENTROPY AND QUANTUM FIELD THEORY: A NON-TECHNICAL INTRODUCTION , 2005, quant-ph/0505193.

[63]  O. Jahn,et al.  Polyakov loop and its relation to static quark potentials and free energies , 2004, hep-lat/0407042.

[64]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[65]  G. Hooft Confinement of quarks , 2003 .

[66]  M. Luscher,et al.  Quark confinement and the bosonic string , 2002, hep-lat/0207003.

[67]  A. Dumitru,et al.  Two-point functions for SU(3) Polyakov loops near T c , 2002, hep-ph/0204223.

[68]  M. Horodecki,et al.  The entanglement of purification , 2002, quant-ph/0202044.

[69]  B. Lucini,et al.  Confining strings in SU(N) gauge theories , 2001, hep-lat/0107007.

[70]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[71]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[72]  J. Maldacena,et al.  Large N Field Theories, String Theory and Gravity , 1999, hep-th/9905111.

[73]  J. Polchinski,et al.  UV / IR relations in AdS dynamics , 1998, hep-th/9809022.

[74]  J. Maldacena Wilson loops in large N field theories , 1998, hep-th/9803002.

[75]  J. Maldacena,et al.  Supergravity and The Large N Limit of Theories With Sixteen Supercharges , 1998, hep-th/9802042.

[76]  F. Wilczek,et al.  On geometric entropy , 1994, hep-th/9401072.

[77]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[78]  K. Moriarty,et al.  Force between static quarks , 1984 .

[79]  Steve W. Otto,et al.  SU(3) Heavy-Quark Potential with High Statistics , 1984 .

[80]  Nicola Cabibbo,et al.  A new method for updating SU(N) matrices in computer simulations of gauge theories , 1982 .

[81]  L. Mclerran,et al.  Quark liberation at high temperature: A Monte Carlo study of SU(2) gauge theory , 1981 .

[82]  M. Creutz,et al.  A Statistical Approach to Quantum Mechanics , 1981 .

[83]  M. Creutz Asymptotic-freedom scales , 1980 .

[84]  Michael Creutz,et al.  Monte Carlo Study of Quantized SU(2) Gauge Theory , 1980 .

[85]  L. Kadanoff Notes on Migdal's recursion formulas , 1976 .

[86]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[87]  Static forces in d = 2 + 1 SU ( N ) gauge theories , 2021 .

[88]  W. Marsden I and J , 2012 .

[89]  A. Sokal Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .

[90]  A. Migdal Recursion Equations in Gauge Theories , 1975 .

[91]  A. Haar Der Massbegriff in der Theorie der Kontinuierlichen Gruppen , 1933 .