Progress in the lattice evaluation of entanglement entropy of three-dimensional Yang-Mills theories and holographic bulk reconstruction
暂无分享,去创建一个
K. Rummukainen | Arttu Pönni | Tobias Rindlisbacher | A. Ponni | T. Rindlisbacher | Ahmed Salami | Niko Jokela
[1] A. Bulgarelli,et al. Entanglement entropy from non-equilibrium Monte Carlo simulations , 2023, Journal of High Energy Physics.
[2] S. Caron-Huot. Holographic cameras: an eye for the bulk , 2022, Journal of High Energy Physics.
[3] K. Rummukainen,et al. Holographic spacetime from lattice Yang-Mills theory , 2022, EPJ Web of Conferences.
[4] K. Rummukainen,et al. Improved lattice method for determining entanglement measures in SU(N) gauge theories , 2022, Proceedings of The 39th International Symposium on Lattice Field Theory — PoS(LATTICE2022).
[5] Peng Liu,et al. Learning the black hole metric from holographic conductivity , 2022, Physical Review D.
[6] P. Hauke,et al. Entanglement witnessing for lattice gauge theories , 2022, Journal of High Energy Physics.
[7] M. Nowak,et al. Spatial entanglement in two-dimensional QCD: Renyi and Ryu-Takayanagi entropies , 2022, Physical Review D.
[8] Chi‐Ok Hwang,et al. Dual geometry of entanglement entropy via deep learning , 2022, Physical Review D.
[9] Norihiro Iizuka,et al. Defining entanglement without tensor factoring: A Euclidean hourglass prescription , 2021, Physical Review D.
[10] K. Hashimoto,et al. Bulk reconstruction of metrics inside black holes by complexity , 2021, Journal of High Energy Physics.
[11] N. Jokela,et al. Quantum information probes of charge fractionalization in large-N gauge theories , 2021, Journal of High Energy Physics.
[12] D. Schaich,et al. Three-dimensional super-Yang-Mills theory on the lattice and dual black branes , 2020, 2010.00026.
[13] K. Hashimoto. Building bulk from Wilson loops , 2020, Progress of Theoretical and Experimental Physics.
[14] N. Jokela,et al. Towards precision holography , 2020, Physical Review D.
[15] K. Hashimoto,et al. Neural ordinary differential equation and holographic quantum chromodynamics , 2020, Mach. Learn. Sci. Technol..
[16] K. Hashimoto,et al. Deep learning and AdS/QCD , 2020, Physical Review D.
[17] G. Horowitz,et al. Bulk reconstruction of metrics with a compact space asymptotically , 2020, Journal of High Energy Physics.
[18] T. Takayanagi,et al. Looking at shadows of entanglement wedges , 2019, Progress of Theoretical and Experimental Physics.
[19] William Donnelly,et al. Entanglement entropy and the large N expansion of two-dimensional Yang-Mills theory , 2019, Journal of High Energy Physics.
[20] N. Jokela,et al. Notes on entanglement wedge cross sections , 2019, Journal of High Energy Physics.
[21] Cynthia Keeler,et al. Towards bulk metric reconstruction from extremal area variations , 2019, Classical and Quantum Gravity.
[22] A. Schafer,et al. Lattice study of Rényi entanglement entropy in SU(Nc) lattice Yang-Mills theory with Nc=2 , 3, 4 , 2018, Physical Review D.
[23] Koji Hashimoto,et al. Deep learning and holographic QCD , 2018, Physical Review D.
[24] Djordje Radicevic,et al. Comments on defining entanglement entropy , 2018, Nuclear Physics B.
[25] T. Takayanagi,et al. Entanglement of purification through holographic duality , 2018 .
[26] Akinori Tanaka,et al. Deep learning and the AdS/CFT correspondence , 2018, Physical Review D.
[27] V. Nair,et al. Gauge-invariant Variables and Entanglement Entropy , 2016, 1701.00014.
[28] Aitor Lewkowycz,et al. Deriving covariant holographic entanglement , 2016, 1607.07506.
[29] A. Rothkopf,et al. Complex heavy-quark potential and Debye mass in a gluonic medium from lattice QCD , 2016, 1607.04049.
[30] Netta Engelhardt,et al. Towards a reconstruction of general bulk metrics , 2016, 1605.01070.
[31] V. Zakharov,et al. Entanglement in Four-Dimensional SU(3) Gauge Theory , 2015, 1512.01334.
[32] S. Trivedi,et al. Aspects of entanglement entropy for gauge theories , 2015, 1510.07455.
[33] William Witczak-Krempa,et al. Universality of Corner Entanglement in Conformal Field Theories. , 2015, Physical review letters.
[34] H. Tasaki,et al. On the definition of entanglement entropy in lattice gauge theories , 2015, 1502.04267.
[35] O. Kaczmarek,et al. Static quark-antiquark potential in the quark-gluon plasma from lattice QCD. , 2014, Physical review letters.
[36] M. Headrick,et al. Holographic holes and differential entropy , 2014, 1408.4770.
[37] Michael Spillane. Constructing Space From Entanglement Entropy , 2013, 1311.4516.
[38] V. Balasubramanian,et al. Bulk curves from boundary data in holography , 2013, 1310.4204.
[39] Aitor Lewkowycz,et al. Quantum corrections to holographic entanglement entropy , 2013, 1307.2892.
[40] A. V. Niekerk,et al. Entanglement Entropy in NonConformal Holographic Theories , 2011, 1108.2294.
[41] V. Zakharov,et al. Quantum entanglement in SU(3) lattice Yang-Mills theory at zero and finite temperatures , 2011, 1104.1011.
[42] D. Lowe,et al. Constructing local bulk observables in interacting AdS/CFT , 2011, 1102.2910.
[43] Samuel Bilson. Extracting spacetimes using the AdS/CFT conjecture. Part II , 2010, 1012.1812.
[44] M. Stahlhofen. The QCD static potential in D<4 dimensions at weak coupling , 2010, 1009.4237.
[45] V. Zakharov,et al. Entanglement entropy of SU(3) Yang-Mills theory , 2009, 0911.2596.
[46] L. Smekal,et al. SU(2) lattice gauge theory in 2+1 dimensions: Critical couplings from twisted boundary conditions and universality , 2009, 0908.4030.
[47] Tadashi Takayanagi,et al. Holographic entanglement entropy: an overview , 2009, 0905.0932.
[48] A. Velytsky. Entanglement entropy in SU(N) gauge theory , 2008, 0809.4502.
[49] J. Albacete. Heavy Quark Potential at Finite Temperature in AdS/CFT , 2008, 0908.2541.
[50] P. Buividovich,et al. Entanglement entropy in gauge theories and the holographic principle for electric strings , 2008, 0806.3376.
[51] P. Buividovich,et al. Numerical study of entanglement entropy in SU(2) lattice gauge theory , 2008, 0802.4247.
[52] A. Velytsky. Entanglement entropy in d+1 SU(N) gauge theory , 2008, 0801.4111.
[53] N. Dass,et al. Subleading properties of the QCD flux-tube in 3-d lattice gauge theory , 2007, 0709.4170.
[54] I. Klebanov,et al. Entanglement as a probe of confinement , 2007, 0709.2140.
[55] J. Hammersley. Numerical metric extraction in AdS/CFT , 2007, 0705.0159.
[56] N. Dass,et al. Continuum limit of string formation in 3d SU(2) LGT , 2007, hep-lat/0702019.
[57] T. Takayanagi,et al. AdS bubbles, entropy and closed string tachyons , 2006, hep-th/0611035.
[58] D. Lowe,et al. Holographic representation of local bulk operators , 2006, hep-th/0606141.
[59] T. Takayanagi,et al. Aspects of Holographic Entanglement Entropy , 2006, hep-th/0605073.
[60] T. Takayanagi,et al. Holographic Derivation of Entanglement Entropy from AdS/CFT , 2006, hep-th/0603001.
[61] H. Casini,et al. Entanglement and alpha entropies for a massive scalar field in two dimensions , 2005, cond-mat/0511014.
[62] J. Cardy,et al. ENTANGLEMENT ENTROPY AND QUANTUM FIELD THEORY: A NON-TECHNICAL INTRODUCTION , 2005, quant-ph/0505193.
[63] O. Jahn,et al. Polyakov loop and its relation to static quark potentials and free energies , 2004, hep-lat/0407042.
[64] J. Cardy,et al. Entanglement entropy and quantum field theory , 2004, hep-th/0405152.
[65] G. Hooft. Confinement of quarks , 2003 .
[66] M. Luscher,et al. Quark confinement and the bosonic string , 2002, hep-lat/0207003.
[67] A. Dumitru,et al. Two-point functions for SU(3) Polyakov loops near T c , 2002, hep-ph/0204223.
[68] M. Horodecki,et al. The entanglement of purification , 2002, quant-ph/0202044.
[69] B. Lucini,et al. Confining strings in SU(N) gauge theories , 2001, hep-lat/0107007.
[70] G. Vidal,et al. Computable measure of entanglement , 2001, quant-ph/0102117.
[71] D. Landau,et al. Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.
[72] J. Maldacena,et al. Large N Field Theories, String Theory and Gravity , 1999, hep-th/9905111.
[73] J. Polchinski,et al. UV / IR relations in AdS dynamics , 1998, hep-th/9809022.
[74] J. Maldacena. Wilson loops in large N field theories , 1998, hep-th/9803002.
[75] J. Maldacena,et al. Supergravity and The Large N Limit of Theories With Sixteen Supercharges , 1998, hep-th/9802042.
[76] F. Wilczek,et al. On geometric entropy , 1994, hep-th/9401072.
[77] Berg,et al. Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.
[78] K. Moriarty,et al. Force between static quarks , 1984 .
[79] Steve W. Otto,et al. SU(3) Heavy-Quark Potential with High Statistics , 1984 .
[80] Nicola Cabibbo,et al. A new method for updating SU(N) matrices in computer simulations of gauge theories , 1982 .
[81] L. Mclerran,et al. Quark liberation at high temperature: A Monte Carlo study of SU(2) gauge theory , 1981 .
[82] M. Creutz,et al. A Statistical Approach to Quantum Mechanics , 1981 .
[83] M. Creutz. Asymptotic-freedom scales , 1980 .
[84] Michael Creutz,et al. Monte Carlo Study of Quantized SU(2) Gauge Theory , 1980 .
[85] L. Kadanoff. Notes on Migdal's recursion formulas , 1976 .
[86] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[87] Static forces in d = 2 + 1 SU ( N ) gauge theories , 2021 .
[88] W. Marsden. I and J , 2012 .
[89] A. Sokal. Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .
[90] A. Migdal. Recursion Equations in Gauge Theories , 1975 .
[91] A. Haar. Der Massbegriff in der Theorie der Kontinuierlichen Gruppen , 1933 .