Uniqueness in the magnetic shaping problem without high frequency assumption

Abstract In this work, we study an inverse source problem arising from the magnetic casting process. Specifically, we discuss the mathematical model without the high frequency assumption on the current in inductors. We derive an associated transmission problem and provide a proof of uniqueness by using the Bedrosian identity.

[1]  J. Roche,et al.  Solution to a three-dimensional axisymmetric inverse electromagnetic casting problem , 2019, Inverse Problems in Science and Engineering.

[2]  Steven R. Bell,et al.  The Cauchy Transform, Potential Theory and Conformal Mapping , 2015 .

[3]  V. F. Medvedev,et al.  Magnetic Fluids: Engineering Applications , 1993 .

[4]  Jaemin Shin,et al.  Inverse and direct magnetic shaping problems , 2012 .

[5]  Marc Dambrine,et al.  About stability of equilibrium shapes , 2000 .

[6]  J. A. Shercliff Magnetic shaping of molten metal columns , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[7]  J. Roche,et al.  Computation of free surfaces in the electromagnetic shaping of liquid metals by optimization algorithms , 1991 .

[8]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[9]  Antoine Henrot,et al.  Un problème inverse en formage des métaux liquides , 1989 .

[10]  José Herskovits,et al.  Inductor shape optimization for electromagnetic casting , 2009 .

[11]  Jean Rodolphe Roche,et al.  Fast solution of the inverse electromagnetic casting problem , 2018 .

[12]  José Herskovits,et al.  The inverse electromagnetic shaping problem , 2009 .

[13]  J. Roche,et al.  Topology design of inductors in electromagnetic casting using level-sets and second order topological derivatives , 2014 .

[14]  Arian Novruzi C2, Alpha Existence Result for a Class of Shape Optimization Problems , 2004, SIAM J. Control. Optim..

[15]  E. Bedrosian A Product Theorem for Hilbert Transforms , 1963 .