Space‐local spectral texture segmentation applied to characterizing the heterogeneity of hydraulic conductivity

[1] Spatial variability of hydraulic conductivity exerts a predominant control on groundwater flow by influencing advective pathways, hydrodynamic dispersion, and density-dependent instabilities. Space-local spectral texture segmentation aids in the macroscale characterization of the spatial heterogeneity of natural porous media via an outcrop analogue approach. Detailed photographic data sets were obtained for a 45 m × 3 m vertical section of glacial-fluvial sand and gravel deposit in the Fanshawe Delta area (Ontario, Canada). High-resolution texture maps of the sedimentary exposure are generated using a texture segmentation routine based on the space-local S transform with the photographic data sets used as input. Geostatistical analyses of the texture maps reveal similarity between the spatial correlation structures of spectral texture and hydraulic conductivity as determined from constant-head permeameter testing of sediment cores. Conditioned on the permeameter measurements, texture maps can be used to provide local continuous estimates of the hydraulic conductivity field at a spatial resolution equal to the sediment core dimensions.

[1]  A. Journel,et al.  Anisotropic hole-effect modeling , 1982 .

[2]  L. Mansinha,et al.  Radar Determination of the Spatial Structure of Hydraulic Conductivity , 2003, Ground water.

[3]  Stephen Theophanis,et al.  Color display of the localized spectrum , 2000 .

[4]  C. Axness,et al.  Three‐dimensional stochastic analysis of macrodispersion in aquifers , 1983 .

[5]  Lalu Mansinha,et al.  Localization of the complex spectrum: the S transform , 1996, IEEE Trans. Signal Process..

[6]  Steven M. Gorelick,et al.  Fractional packing model for hydraulic conductivity derived from sediment mixtures , 1995 .

[7]  R. Bilonick An Introduction to Applied Geostatistics , 1989 .

[8]  R. O. Gilbert Statistical Methods for Environmental Pollution Monitoring , 1987 .

[9]  S. Gorelick,et al.  Heterogeneity in Sedimentary Deposits: A Review of Structure‐Imitating, Process‐Imitating, and Descriptive Approaches , 1996 .

[10]  Michael A. Celia,et al.  Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 3. Hydraulic c , 1992 .

[11]  MansinhaL. Localization of the complex spectrum , 1996 .

[12]  M. A. Medina,et al.  Incorporating Auxiliary Geophysical Data into Ground‐Water Flow Parameter Estimation , 1997 .

[13]  Edward A. McBean,et al.  Statistical procedures for analysis of environmental monitoring data and risk assessment , 2000 .

[14]  S. J. Baban,et al.  Image Interpretation in Geology, 2nd edn, S.A. Drury. Chapman & Hall, London (1993), 283 pp, (PB) £24.95, ISBN: 0-412-48880-9 , 1995 .

[15]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[16]  T.-C. Jim Yeh,et al.  Observation and three-dimensional simulation of chloride plumes in a sandy aquifer under forced-gradient conditions , 1995 .

[17]  Rosemary Knight,et al.  GEOSTATISTICAL ANALYSIS OF GROUND-PENETRATING RADAR DATA : A MEANS OF DESCRIBING SPATIAL VARIATION IN THE SUBSURFACE , 1998 .

[18]  Clayton V. Deutsch,et al.  Geostatistical Software Library and User's Guide , 1998 .

[19]  Barbara Hubbard,et al.  The World According to Wavelets , 1996 .

[20]  John A. Cherry,et al.  Contaminant Migration in Saturated Unconsolidated Geologic Deposits , 1982 .

[21]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[22]  Eileen P. Poeter,et al.  Influence of Aquifer Heterogeneity on Contaminant Transport at the Hanford Site , 1990 .

[23]  John A. Cherry,et al.  Migration of contaminants in groundwater at a landfill: A case study: 1. Groundwater flow and plume delineation , 1983 .

[24]  T. Mukerji,et al.  The Rock Physics Handbook , 1998 .

[25]  P. Jussel,et al.  Transport modeling in heterogeneous aquifers: 1. Statistical description and numerical generation of gravel deposits , 1994 .

[26]  E. A. Sudicky,et al.  Micro-scale modelling in the study of plume evolution in heterogeneous media , 1987 .

[27]  L. Mansinha,et al.  Generation of Aquifer Heterogeneity Maps Using Two-Dimensional Spectral Texture Segmentation Techniques , 1999 .

[28]  Gerald Kaiser,et al.  A Friendly Guide to Wavelets , 1994 .

[29]  M. Anderson Hydrogeologic facies models to delineate large-scale spatial trends in glacial and glaciofluvial sediments , 1989 .

[30]  Franklin W. Schwartz,et al.  Instabilities in variable density flows: Stability and sensitivity analyses for homogeneous and heterogeneous media , 1997 .

[31]  A. Zayed Handbook of Function and Generalized Function Transformations , 1996 .

[32]  R. P. Lowe,et al.  Pattern analysis with two-dimensional spectral localisation: Applications of two-dimensional S transforms , 1997 .

[33]  S. Gorelick,et al.  Estimating lithologic and transport properties in three dimensions using seismic and tracer data , 1996 .

[34]  R. P. Lowe,et al.  Local S-spectrum analysis of 1-D and 2-D data , 1997 .

[35]  Y. Rubin,et al.  Spatial correlation structure estimation using geophysical and hydrogeological data , 1999 .

[36]  Franklin W. Schwartz,et al.  On the application of image analysis to determine concentration distributions in laboratory experiments , 1993 .