Surface Acoustic Wave Microfluidics

Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10–1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena—from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization—underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.

[1]  郑海荣,et al.  Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves , 2012 .

[2]  James Friend,et al.  Double aperture focusing transducer for controlling microparticle motions in trapezoidal microchannels with surface acoustic waves , 2009 .

[3]  Yong Qing Fu,et al.  Experimental and numerical investigation of acoustic streaming excited by using a surface acoustic wave device on a 128° YX-LiNbO3 substrate , 2010 .

[4]  O. Matar,et al.  Droplet displacements and oscillations induced by ultrasonic surface acoustic waves: a quantitative study. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Leslie Y Yeo,et al.  Exploitation of surface acoustic waves to drive size-dependent microparticle concentration within a droplet. , 2010, Lab on a chip.

[6]  Sehyun Shin,et al.  Density-dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave. , 2012, Biomicrofluidics.

[7]  Richard M. White,et al.  DIRECT PIEZOELECTRIC COUPLING TO SURFACE ELASTIC WAVES , 1965 .

[8]  Christian Druon,et al.  SAW nanopump for handling droplets in view of biological applications , 2006 .

[9]  David R Goodlett,et al.  Surface acoustic wave nebulization of peptides as a microfluidic interface for mass spectrometry. , 2010, Analytical chemistry.

[10]  R. Pethig Review article-dielectrophoresis: status of the theory, technology, and applications. , 2010, Biomicrofluidics.

[11]  Achim Wixforth,et al.  Acoustic manipulation of small droplets , 2004, Analytical and bioanalytical chemistry.

[12]  Rasim Guldiken,et al.  Active density-based separation using standing surface acoustic waves , 2012 .

[13]  E. McMillan The Synchrotron-A Proposed High Energy Particle Accelerator , 1945 .

[14]  Leslie Y Yeo,et al.  A scaffold cell seeding method driven by surface acoustic waves. , 2007, Biomaterials.

[15]  Leslie Y Yeo,et al.  The dynamics of surface acoustic wave‐driven scaffold cell seeding , 2009, Biotechnology and bioengineering.

[16]  Adrian Neild,et al.  The use of acoustic radiation forces to position particles within fluid droplets , 2007 .

[17]  Julien Reboud,et al.  Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies , 2012, Proceedings of the National Academy of Sciences.

[18]  James Friend,et al.  Template-free synthesis and encapsulation technique for layer-by-layer polymer nanocarrier fabrication. , 2011, ACS nano.

[19]  J. Friend,et al.  Fabrication of microfluidic devices using polydimethylsiloxane. , 2010, Biomicrofluidics.

[20]  Achim Wixforth,et al.  Alignment of carbon nanotubes on pre-structured silicon by surface acoustic waves , 2006 .

[21]  Tsung-Tsong Wu,et al.  Actuating and detecting of microdroplet using slanted finger interdigital transducers , 2005 .

[22]  J.N. Antonevich,et al.  Ultrasonic Atomization of Liquids , 1959, IRE Transactions on Ultrasonic Engineering.

[23]  Babetta L. Marrone,et al.  Droplet translocation by focused surface acoustic waves , 2012 .

[24]  A. Wixforth,et al.  An acoustically driven microliter flow chamber on a chip (muFCC) for cell-cell and cell-surface interaction studies. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[25]  Subramanian K. R. S. Sankaranarayanan,et al.  Acoustic streaming induced elimination of nonspecifically bound proteins from a surface acoustic wave biosensor: Mechanism prediction using fluid-structure interaction models , 2010 .

[26]  A. Walton,et al.  Integrated microfluidics system using surface acoustic wave and electrowetting on dielectrics technology. , 2012, Biomicrofluidics.

[27]  Ventsislav Yantchev,et al.  Surface acoustic wave induced particle manipulation in a PDMS channel—principle concepts for continuous flow applications , 2012, Biomedical microdevices.

[28]  Y. Fu,et al.  ZnO film thickness effect on surface acoustic wave modes and acoustic streaming , 2008 .

[29]  H. M. Hertza Standing-wave acoustic trap for nonintrusive positioning of microparticles , 1999 .

[30]  S. Tenneti,et al.  Particle-Resolved Direct Numerical Simulation for Gas-Solid Flow Model Development , 2014 .

[31]  Achim Wixforth,et al.  Novel surface acoustic wave (SAW)-driven closed PDMS flow chamber , 2011, Microfluidics and Nanofluidics.

[32]  Daniel Ahmed,et al.  Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). , 2008, Lab on a chip.

[33]  Jinjie Shi,et al.  Tunable patterning of microparticles and cells using standing surface acoustic waves. , 2012, Lab on a chip.

[34]  John E. Cunningham,et al.  Formation and manipulation of two-dimensional arrays of micron-scale particles in microfluidic systems by surface acoustic waves , 2009 .

[35]  James Friend,et al.  Interfacial destabilization and atomization driven by surface acoustic waves , 2008 .

[36]  James Friend,et al.  UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration. , 2012, Lab on a chip.

[37]  Carl Eckart,et al.  Vortices and Streams Caused by Sound Waves , 1948 .

[38]  Pierre Thibault,et al.  Fast acoustic tweezers for the two-dimensional manipulation of individual particles in microfluidic channels , 2012, 1211.2967.

[39]  James Friend,et al.  Surface acoustic wave solid-state rotational micromotor , 2012 .

[40]  D A Weitz,et al.  Surface acoustic wave actuated cell sorting (SAWACS). , 2010, Lab on a chip.

[41]  Lord Rayleigh,et al.  On the circulation of air observed in kundt’s tubes, and on some allied acoustical problems , 1883, Proceedings of the Royal Society of London.

[42]  James Friend,et al.  Rotational microfluidic motor for on-chip microcentrifugation , 2011 .

[43]  Leslie Y Yeo,et al.  Ultrasonic nebulization platforms for pulmonary drug delivery , 2010, Expert opinion on drug delivery.

[44]  Wai Ho Li,et al.  Uniform mixing in paper-based microfluidic systems using surface acoustic waves. , 2012, Lab on a chip.

[45]  Omar Elmazria,et al.  Microfluidic device based on surface acoustic wave , 2006 .

[46]  M. Mohammed,et al.  Nonlinear hydrodynamic effects induced by Rayleigh surface acoustic wave in sessile droplets. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Bastian E. Rapp,et al.  Surface acoustic wave biosensors: a review , 2008, Analytical and bioanalytical chemistry.

[48]  Julien Reboud,et al.  Tuneable surface acoustic waves for fluid and particle manipulations on disposable chips. , 2010, Lab on a chip.

[49]  S. Shiokawa,et al.  Development of Novel Atomization System Based on SAW Streaming , 2004 .

[50]  James Friend,et al.  Capillary wave motion excited by high frequency surface acoustic waves , 2010 .

[51]  Marc Madou,et al.  Lab on a CD. , 2006, Annual review of biomedical engineering.

[52]  Y. Fu,et al.  Scaling effects on flow hydrodynamics of confined microdroplets induced by Rayleigh surface acoustic wave , 2012 .

[53]  Gwo-Bin Lee,et al.  Active micro-mixers using surface acoustic waves on Y-cut 128° LiNbO3 , 2006 .

[54]  Toshiro Higuchi,et al.  A device for fabricating protein chips by using a surface acoustic wave atomizer and electrostatic deposition , 2005 .

[55]  James Friend,et al.  The extraction of liquid, protein molecules and yeast cells from paper through surface acoustic wave atomization. , 2010, Lab on a chip.

[56]  Vincent Laude,et al.  Guiding and bending of acoustic waves in highly confined phononic crystal waveguides , 2004 .

[57]  Michael Wirth,et al.  An acoustically-driven biochip - impact of flow on the cell-association of targeted drug carriers. , 2009, Lab on a chip.

[58]  Tony Jun Huang,et al.  Surface acoustic wave (SAW) acoustophoresis: now and beyond. , 2012, Lab on a chip.

[59]  Toshiro Higuchi,et al.  SURFACE ACOUSTIC WAVE ATOMIZER , 1995 .

[60]  K. Lamb Internal Wave Breaking and Dissipation Mechanisms on the Continental Slope/Shelf , 2014 .

[61]  Yi Zhang,et al.  Phononic Crystals for Shaping Fluids , 2011, Advanced materials.

[62]  Vincent Thomy,et al.  SPR biosensing coupled to a digital microfluidic microstreaming system. , 2007, Biosensors & bioelectronics.

[63]  Vincent Aimez,et al.  Integrated active mixing and biosensing using surface acoustic waves (SAW) and surface plasmon resonance (SPR) on a common substrate. , 2010, Lab on a chip.

[64]  V. Thomy,et al.  Enhancement of biosensing performance in a droplet-based bioreactor by in situ microstreaming. , 2010, Biomicrofluidics.

[65]  James Friend,et al.  Unique flow transitions and particle collection switching phenomena in a microchannel induced by surface acoustic waves , 2010 .

[66]  Yong Qing Fu,et al.  Microfluidic pumps employing surface acoustic waves generated in ZnO thin films , 2009 .

[67]  A. Wixforth,et al.  Acoustic driven flow and lattice Boltzmann simulations to study cell adhesion in biofunctionalized mu-fluidic channels with complex geometry. , 2010, Biomicrofluidics.

[68]  Jeanne M. Hossenlopp,et al.  Applications of Acoustic Wave Devices for Sensing in Liquid Environments , 2006 .

[69]  Yi Zhang,et al.  Integrated immunoassay using tuneable surface acoustic waves and lensfree detection. , 2011, Lab on a chip.

[70]  A. J. Flewittb,et al.  Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review , 2009 .

[71]  Yuchieh Kao,et al.  Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis. , 2012, Analytical chemistry.

[72]  W. Jakubik,et al.  Surface acoustic wave-based gas sensors , 2011 .

[73]  A. Kundt Ueber eine neue Art akustischer Staubfiguren und über die Anwendung derselben zur Bestimmung der Schallgeschwindigkeit in festen Körpern und Gasen , 1866 .

[74]  Leslie Y Yeo,et al.  Rapid production of protein-loaded biodegradable microparticles using surface acoustic waves. , 2009, Biomicrofluidics.

[75]  H. Wijshoff,et al.  The dynamics of the piezo inkjet printhead operation , 2010 .

[76]  B. Raeymaekers,et al.  Manipulation of diamond nanoparticles using bulk acoustic waves , 2011 .

[77]  Utkan Demirci,et al.  Sheathless Size-Based Acoustic Particle Separation , 2012, Sensors.

[78]  James Friend,et al.  Particle concentration and mixing in microdrops driven by focused surface acoustic waves , 2008 .

[79]  Stefan Cular,et al.  Flow induced by acoustic streaming on surface-acoustic-wave devices and its application in biofouling removal: a computational study and comparisons to experiment. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[80]  Leslie Y Yeo,et al.  Ultrafast microfluidics using surface acoustic waves. , 2009, Biomicrofluidics.

[81]  James Friend,et al.  Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization , 2008, Nanotechnology.

[82]  Yong Qing Fu,et al.  Surface acoustic wave nebulization on nanocrystalline ZnO film , 2012 .

[83]  Yu Wang,et al.  Manipulating particle trajectories with phase-control in surface acoustic wave microfluidics. , 2011, Biomicrofluidics.

[84]  P. Turq,et al.  Acoustophoresis Revisited. 1. Electrolyte Solutions , 1995 .

[85]  Fei Yan,et al.  Transportation of single cell and microbubbles by phase-shift introduced to standing leaky surface acoustic waves. , 2011, Biomicrofluidics.

[86]  M. Cecchini,et al.  Interaction-free, automatic, on-chip fluid routing by surface acoustic waves. , 2012, Lab on a chip.

[87]  James Friend,et al.  Quantification of surface acoustic wave induced chaotic mixing-flows in microfluidic wells , 2011 .

[88]  Achim Wixforth,et al.  Microfluidic mixing via acoustically driven chaotic advection. , 2008, Physical review letters.

[89]  D. Goodlett,et al.  Surface Acoustic Wave Nebulization Produces Ions with Lower Internal Energy than Electrospray Ionization , 2012, Journal of The American Society for Mass Spectrometry.

[90]  Thomas Laurell,et al.  Chip integrated strategies for acoustic separation and manipulation of cells and particles. , 2007, Chemical Society reviews.

[91]  A. Doinikov On the radiation pressure on small spheres , 1996 .

[92]  Fabio Beltram,et al.  Surface-acoustic-wave counterflow micropumps for on-chip liquid motion control in two-dimensional microchannel arrays. , 2010, Lab on a chip.

[93]  James Friend,et al.  Rapid fluid flow and mixing induced in microchannels using surface acoustic waves , 2009 .

[94]  N. Riley Acoustic Streaming , 1998 .

[95]  Ilia Katardjiev,et al.  Surface acoustic wave-induced precise particle manipulation in a trapezoidal glass microfluidic channel , 2012 .

[96]  Leslie Y Yeo,et al.  Evaporative self-assembly assisted synthesis of polymeric nanoparticles by surface acoustic wave atomization , 2008, Nanotechnology.

[97]  Leslie Y Yeo,et al.  Miniaturized Lab-on-a-Disc (miniLOAD). , 2012, Small.

[98]  Noel T. Clemens,et al.  Low-Frequency Unsteadiness of Shock Wave/Turbulent Boundary Layer Interactions , 2014 .

[99]  Yi Zhang,et al.  Phononic crystal structures for acoustically driven microfluidic manipulations. , 2011, Lab on a chip.

[100]  James Friend,et al.  Rapid microscale in-gel processing and digestion of proteins using surface acoustic waves. , 2010, Lab on a chip.

[101]  James Friend,et al.  Extensional flow of low-viscosity fluids in capillary bridges formed by pulsed surface acoustic wave jetting , 2011 .

[102]  Colin Campbell,et al.  Surface Acoustic Wave Devices for Mobile and Wireless Communications , 1998 .

[103]  James Friend,et al.  Surface acoustic waves as an energy source for drop scale synthetic chemistry. , 2009, Lab on a chip.

[104]  Joachim O. Rädler,et al.  Dynamic patterns in a supported lipid bilayer driven by standing surface acoustic waves. , 2009, Lab on a chip.

[105]  Leslie Y Yeo,et al.  Interfacial jetting phenomena induced by focused surface vibrations. , 2009, Physical review letters.

[106]  Leslie Y Yeo,et al.  Microfluidic devices for bioapplications. , 2011, Small.

[107]  Jean-Pierre Sozanski,et al.  Monitoring SAW-actuated microdroplets in view of biological applications , 2009 .

[108]  Hsueh-Chia Chang,et al.  Electrokinetically-Driven Microfluidics and Nanofluidics , 2009 .

[109]  J. Friend,et al.  The appearance of boundary layers and drift flows due to high-frequency surface waves , 2012, Journal of Fluid Mechanics.

[110]  James Friend,et al.  Transmitting high power rf acoustic radiation via fluid couplants into superstrates for microfluidics , 2009 .

[111]  Daniel Ahmed,et al.  Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). , 2009, Lab on a chip.

[112]  J. Friend,et al.  Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics , 2011 .

[113]  Leslie Y Yeo,et al.  Atomization off thin water films generated by high-frequency substrate wave vibrations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[114]  John E. Cunningham,et al.  Acousto-microfluidics: Transporting microbubble and microparticle arrays in acoustic traps using surface acoustic waves , 2012 .

[115]  Leslie Y Yeo,et al.  Microfluidic colloidal island formation and erasure induced by surface acoustic wave radiation. , 2008, Physical review letters.

[116]  James Friend,et al.  Particle concentration via acoustically driven microcentrifugation: microPIV flow visualization and numerical modelling studies , 2009 .

[117]  Vinay Pagay,et al.  The Physicochemical Hydrodynamics of Vascular Plants , 2014 .

[118]  A Alexander-Katz,et al.  Shear-induced unfolding triggers adhesion of von Willebrand factor fibers , 2007, Proceedings of the National Academy of Sciences.

[119]  Achim Wixforth,et al.  Surface-acoustic-wave-enhanced alignment of thiolated carbon nanotubes on gold electrodes. , 2005, Small.

[120]  F Placido,et al.  Microfluidics based on ZnO/nanocrystalline diamond surface acoustic wave devices. , 2012, Biomicrofluidics.

[121]  John E. Cunningham,et al.  Alignment of particles in microfluidic systems using standing surface acoustic waves , 2008 .

[122]  Leslie Y Yeo,et al.  Microparticle collection and concentration via a miniature surface acoustic wave device. , 2007, Lab on a chip.

[123]  J. Friend,et al.  Microscale capillary wave turbulence excited by high frequency vibration. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[124]  G. Whitesides,et al.  Diagnostics for the developing world: microfluidic paper-based analytical devices. , 2010, Analytical chemistry.

[125]  Leslie Y Yeo,et al.  Surface acoustic wave concentration of particle and bioparticle suspensions , 2007, Biomedical microdevices.

[126]  James Friend,et al.  Surface acoustic wave micromotor with arbitrary axis rotational capability , 2011 .

[127]  L. Gor’kov,et al.  On the forces acting on a small particle in an acoustical field in an ideal fluid , 1962 .

[128]  S. Shiokawa,et al.  Identification of electrolyte solutions using a shear horizontal surface acoustic wave sensor with a liquid-flow system , 2003 .

[129]  Doinikov Theory of acoustic radiation pressure for actual fluids. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[130]  Showko Shiokawa,et al.  Study on SAW Streaming and its Application to Fluid Devices , 1990 .

[131]  Takahisa Hayashi,et al.  5 nm Gate Oxide Grown by Rapid Thermal Processing for Future MOSFETs , 1990 .

[132]  Leslie Y Yeo,et al.  Unique fingering instabilities and soliton-like wave propagation in thin acoustowetting films , 2012, Nature Communications.

[133]  Leslie Y Yeo,et al.  Paper-based microfluidic surface acoustic wave sample delivery and ionization source for rapid and sensitive ambient mass spectrometry. , 2011, Analytical chemistry.

[134]  Alexander A. Doinikov,et al.  Acoustic radiation interparticle forces in a compressible fluid , 2001, Journal of Fluid Mechanics.

[135]  Sehyun Shin,et al.  Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. , 2011, Lab on a chip.

[136]  James Friend,et al.  Effect of surface acoustic waves on the viability, proliferation and differentiation of primary osteoblast-like cells. , 2009, Biomicrofluidics.

[137]  A. Abate,et al.  Surface acoustic wave (SAW) directed droplet flow in microfluidics for PDMS devices. , 2009, Lab on a chip.

[138]  Leslie Y Yeo,et al.  Surface vibration induced spatial ordering of periodic polymer patterns on a substrate. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[139]  A. Yeremin,et al.  Identification of a K isomer in 252No , 2007 .

[140]  T. Huang,et al.  Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). , 2009, Lab on a chip.

[141]  Leslie Y Yeo,et al.  Miniature inhalation therapy platform using surface acoustic wave microfluidic atomization. , 2009, Lab on a chip.

[142]  Oliver G. Schmidt,et al.  Surface acoustic wave mediated dielectrophoretic alignment of rolled-up microtubes in microfluidic systems , 2010 .

[143]  I-Kao Chiang,et al.  Three-dimensional continuous particle focusing in a microfluidic channel via standing surface acoustic waves (SSAW). , 2011, Lab on a chip.

[144]  M. Álvarez,et al.  Rapid generation of protein aerosols and nanoparticles via SAW atomisation , 2008 .

[145]  Yi Zhang,et al.  Nebulisation on a disposable array structured with phononic lattices. , 2012, Lab on a chip.

[146]  J. Friend,et al.  Fast surface acoustic wave-matrix-assisted laser desorption ionization mass spectrometry of cell response from islets of Langerhans. , 2013, Analytical chemistry.

[147]  Michael Faraday,et al.  XVII. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces , 1831, Philosophical Transactions of the Royal Society of London.

[148]  Fabio Beltram,et al.  Acoustic-counterflow microfluidics by surface acoustic waves , 2008 .

[149]  Xu Li,et al.  A perspective on paper-based microfluidics: Current status and future trends. , 2012, Biomicrofluidics.

[150]  I-Kao Chiang,et al.  On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves , 2012, Proceedings of the National Academy of Sciences.

[151]  James Friend,et al.  Direct visualization of surface acoustic waves along substrates using smoke particles , 2007 .