Manifold interpolation and model reduction

One approach to parametric and adaptive model reduction is via the interpolation of orthogonal bases, subspaces or positive definite system matrices. In all these cases, the sampled inputs stem from matrix sets that feature a geometric structure and thus form so-called matrix manifolds. This work will be featured as a chapter in the upcoming Handbook on Model Order Reduction (P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W.H.A. Schilders, L.M. Silveira, eds, to appear on DE GRUYTER) and reviews the numerical treatment of the most important matrix manifolds that arise in the context of model reduction. Moreover, the principal approaches to data interpolation and Taylor-like extrapolation on matrix manifolds are outlined and complemented by algorithms in pseudo-code.

[1]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[2]  Y. Wong Differential geometry of grassmann manifolds. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. Carter Lie Groups , 1970, Nature.

[4]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[5]  F. Pirani MATHEMATICAL METHODS OF CLASSICAL MECHANICS (Graduate Texts in Mathematics, 60) , 1982 .

[6]  Gene H. Golub,et al.  Matrix computations , 1983 .

[7]  B. Barsky,et al.  An Introduction to Splines for Use in Computer Graphics and Geometric Modeling , 1987 .

[8]  Lyle Noakes,et al.  Cubic Splines on Curved Spaces , 1989 .

[9]  P. Crouch,et al.  The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces , 1995 .

[10]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[11]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[12]  H. Upmeier ANALYSIS ON SYMMETRIC CONES (Oxford Mathematical Monographs) , 1996 .

[13]  John M. Lee Riemannian Manifolds: An Introduction to Curvature , 1997 .

[14]  N. S. Hoang,et al.  A Low-Cost , 1997 .

[15]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[16]  P. Michor,et al.  Choosing roots of polynomials smoothly , 1998, math/9801026.

[17]  S. Lang Fundamentals of differential geometry , 1998 .

[18]  S. Ravindran,et al.  A Reduced-Order Method for Simulation and Control of Fluid Flows , 1998 .

[19]  Jean Gallier,et al.  Geometric Methods and Applications: For Computer Science and Engineering , 2000 .

[20]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[21]  P. Crouch,et al.  On the geometry of Riemannian cubic polynomials , 2001 .

[22]  W. Kühnel Differential Geometry: Curves - Surfaces - Manifolds , 2002 .

[23]  W. Rossmann Lie Groups: An Introduction through Linear Groups , 2002 .

[24]  K.A. Gallivan,et al.  Efficient algorithms for inferences on Grassmann manifolds , 2004, IEEE Workshop on Statistical Signal Processing, 2003.

[25]  Siep Weiland,et al.  Missing Point Estimation in Models Described by Proper Orthogonal Decomposition , 2004, IEEE Transactions on Automatic Control.

[26]  P. Absil,et al.  Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation , 2004 .

[27]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[28]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[29]  Peter Schröder,et al.  Multiscale Representations for Manifold-Valued Data , 2005, Multiscale Model. Simul..

[30]  M. Hinze,et al.  Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .

[31]  Maher Moakher,et al.  A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..

[32]  Maher Moakher,et al.  Symmetric Positive-Definite Matrices: From Geometry to Applications and Visualization , 2006, Visualization and Processing of Tensor Fields.

[33]  Jacob K. White,et al.  Model order reduction for nonlinear dynamical systems based on trajectory piecewise-linear approximations , 2006 .

[34]  R. C. Rodrigues,et al.  A two-step algorithm of smooth spline generation on Riemannian manifolds , 2006 .

[35]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[36]  K. Maute,et al.  Multi-point Extended Reduced Order Modeling For Design Optimization and Uncertainty Analysis , 2006 .

[37]  Xavier Pennec,et al.  Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.

[38]  Frank Thiele,et al.  Continuous Mode Interpolation for Control-Oriented Models of Fluid Flow , 2007 .

[39]  R. Bhatia Positive Definite Matrices , 2007 .

[40]  Lyle Noakes,et al.  Bézier curves and C2 interpolation in Riemannian manifolds , 2007, J. Approx. Theory.

[41]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[42]  Bernhard Schölkopf,et al.  Manifold‐valued Thin‐Plate Splines with Applications in Computer Graphics , 2008, Comput. Graph. Forum.

[43]  Knut Hüper,et al.  Rolling Stiefel manifolds , 2008, Int. J. Syst. Sci..

[44]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[45]  Rama Chellappa,et al.  Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  A. Hay,et al.  Local improvements to reduced-order models using sensitivity analysis of the proper orthogonal decomposition , 2009, Journal of Fluid Mechanics.

[47]  Silvere Bonnabel,et al.  Riemannian Metric and Geometric Mean for Positive Semidefinite Matrices of Fixed Rank , 2008, SIAM J. Matrix Anal. Appl..

[48]  K. Willcox,et al.  Interpolation among reduced‐order matrices to obtain parameterized models for design, optimization and probabilistic analysis , 2009 .

[49]  Dominique Pelletier,et al.  Reduced-order models for parameter dependent geometries based on shape sensitivity analysis , 2010, J. Comput. Phys..

[50]  Maher Moakher,et al.  The Riemannian Geometry of the Space of Positive-Definite Matrices and Its Application to the Regularization of Positive-Definite Matrix-Valued Data , 2011, Journal of Mathematical Imaging and Vision.

[51]  Boris Lohmann,et al.  Parametric Model Order Reduction by Matrix Interpolation , 2010, Autom..

[52]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[53]  B. R. Noack,et al.  Galerkin Models Enhancements for Flow Control , 2011 .

[54]  B. Haasdonk,et al.  Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition , 2011 .

[55]  Pierre-Antoine Absil,et al.  Algorithm comparison for Karcher mean computation of rotation matrices and diffusion tensors , 2011, 2011 19th European Signal Processing Conference.

[56]  C. Farhat,et al.  A low‐cost, goal‐oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems , 2011 .

[57]  P. Absil,et al.  A discrete regression method on manifolds and its application to data on SO(n) , 2011 .

[58]  G. Larotonda,et al.  The left invariant metric in the general linear group , 2011, 1109.0520.

[59]  Charbel Farhat,et al.  An Online Method for Interpolating Linear Parametric Reduced-Order Models , 2011, SIAM J. Sci. Comput..

[60]  Alexander P. Kuleshov,et al.  Tangent Bundle Manifold Learning via Grassmann&Stiefel Eigenmaps , 2012, ArXiv.

[61]  Anuj Srivastava,et al.  A Gradient-Descent Method for Curve Fitting on Riemannian Manifolds , 2011, Foundations of Computational Mathematics.

[62]  René Vidal,et al.  On the Convergence of Gradient Descent for Finding the Riemannian Center of Mass , 2011, SIAM J. Control. Optim..

[63]  N. T. Son A real time procedure for affinely dependent parametric model order reduction using interpolation on Grassmann manifolds , 2013 .

[64]  Gilead Tadmor,et al.  Reduced-Order Modelling for Flow Control , 2013 .

[65]  Konrad Polthier,et al.  De Casteljau's algorithm on manifolds , 2013, Comput. Aided Geom. Des..

[66]  P. Grohs Quasi-interpolation in Riemannian manifolds , 2013 .

[67]  Bart Vandereycken,et al.  A Riemannian geometry with complete geodesics for the set of positive semidefinite matrices of fixed rank , 2013 .

[68]  Ralf Zimmermann,et al.  Gradient-enhanced surrogate modeling based on proper orthogonal decomposition , 2013, J. Comput. Appl. Math..

[69]  Quentin Rentmeesters Algorithms for data fitting on some common homogeneous spaces , 2013 .

[70]  R. Zimmermann,et al.  Interpolation-based reduced-order modelling for steady transonic flows via manifold learning , 2014 .

[71]  Benjamin Peherstorfer,et al.  Localized Discrete Empirical Interpolation Method , 2014, SIAM J. Sci. Comput..

[72]  Mario Ohlberger,et al.  Error Control for the Localized Reduced Basis Multiscale Method with Adaptive On-Line Enrichment , 2015, SIAM J. Sci. Comput..

[73]  F. Leite,et al.  Geometric mean and geodesic regression on Grassmannians , 2015 .

[74]  Jorge Batista,et al.  SOLVING INTERPOLATION PROBLEMS ON STIEFEL MANIFOLDS USING QUASI-GEODESICS , 2015 .

[75]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[76]  Marcos M. Alexandrino,et al.  Lie Groups and Geometric Aspects of Isometric Actions , 2015 .

[77]  Anuj Srivastava,et al.  Riemannian Computing in Computer Vision , 2015 .

[78]  Ralf Zimmermann Local Parametrization of Subspaces on Matrix Manifolds via Derivative Information , 2015, ENUMATH.

[79]  R. Hartley,et al.  Kernels on Riemannian Manifolds , 2016 .

[80]  Vittorio Murino,et al.  Algorithmic Advances in Riemannian Geometry and Applications , 2016, Advances in Computer Vision and Pattern Recognition.

[81]  Karen Willcox,et al.  An Accelerated Greedy Missing Point Estimation Procedure , 2016, SIAM J. Sci. Comput..

[82]  Vittorio Murino,et al.  Algorithmic Advances in Riemannian Geometry and Applications: For Machine Learning, Computer Vision, Statistics, and Optimization , 2016 .

[83]  Pierre-Yves Gousenbourger,et al.  Differentiable Piecewise-Bézier Surfaces on Riemannian Manifolds , 2016, SIAM J. Imaging Sci..

[84]  Anoop Cherian,et al.  Positive Definite Matrices : Data Representation and Applications to Computer Vision , 2015 .

[85]  Sterling C. Johnson,et al.  Canonical Correlation Analysis on SPD(n) Manifolds , 2016 .

[86]  Ralf Zimmermann,et al.  A Matrix-Algebraic Algorithm for the Riemannian Logarithm on the Stiefel Manifold under the Canonical Metric , 2016, SIAM J. Matrix Anal. Appl..

[87]  Rudrasis Chakraborty,et al.  Statistics on the (compact) Stiefel manifold: Theory and Applications , 2017, ArXiv.

[88]  Darshan Bryner Endpoint Geodesics on the Stiefel Manifold Embedded in Euclidean Space , 2017, SIAM J. Matrix Anal. Appl..

[89]  Roger Godement Introduction to the Theory of Lie Groups , 2017 .

[90]  Knut Hüper,et al.  Real Stiefel Manifolds: An Extrinsic Point of View , 2018, 2018 13th APCA International Conference on Control and Soft Computing (CONTROLO).

[91]  Steven L. Brunton,et al.  Online Interpolation Point Refinement for Reduced-Order Models using a Genetic Algorithm , 2016, SIAM J. Sci. Comput..

[92]  Pierre-Yves Gousenbourger,et al.  Data Fitting on Manifolds with Composite Bézier-Like Curves and Blended Cubic Splines , 2018, Journal of Mathematical Imaging and Vision.

[93]  Pierre-Yves Gousenbourger,et al.  Online balanced truncation for linear time-varying systems using continuously differentiable interpolation on Grassmann manifold , 2019, 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT).

[94]  Chafik Samir,et al.  C1 interpolating Bézier path on Riemannian manifolds, with applications to 3D shape space , 2019, Appl. Math. Comput..

[95]  Pierre-Yves Gousenbourger,et al.  Interpolation on the manifold of fixed-rank positive-semidefinite matrices for parametric model order reduction: preliminary results , 2019, ESANN.

[96]  Ralf Zimmermann,et al.  Parametric Model Reduction via Interpolating Orthonormal Bases , 2019, Lecture Notes in Computational Science and Engineering.

[97]  Ralf Zimmermann,et al.  Hermite Interpolation and data processing errors on Riemannian matrix manifolds , 2019, SIAM J. Sci. Comput..

[98]  Katie E. Severn,et al.  Smoothing splines on Riemannian manifolds, with applications to 3D shape space , 2018, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[99]  Pierre-Antoine Absil,et al.  Quotient Geometry with Simple Geodesics for the Manifold of Fixed-Rank Positive-Semidefinite Matrices , 2020, SIAM J. Matrix Anal. Appl..

[100]  Charbel Farhat,et al.  Gradient-based constrained optimization using a database of linear reduced-order models , 2015, J. Comput. Phys..