In Situ Au L3 and L2 edge XANES spectral analysis during growth of thiol protected gold nanoparticles for the study on particle size dependent electronic properties

[1]  T. Uruga,et al.  In situ observation of nucleation and growth process of gold nanoparticles by quick XAFS spectroscopy. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  Y. Hitomi,et al.  Efficient Capping of Growing Gold Nanoparticles by Porphyrin Having Two Disulfide Straps over One Face , 2010 .

[3]  R. Lennox,et al.  New insights into Brust-Schiffrin metal nanoparticle synthesis. , 2010, Journal of the American Chemical Society.

[4]  R. Jin,et al.  Site-Specific and Size-Dependent Bonding of Compositionally Precise Gold−Thiolate Nanoparticles from X-ray Spectroscopy , 2010 .

[5]  R. Jin,et al.  Quantum sized, thiolate-protected gold nanoclusters. , 2010, Nanoscale.

[6]  H. Sakurai,et al.  Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. , 2009, Journal of the American Chemical Society.

[7]  Y. Hitomi,et al.  One-phase synthesis of small gold nanoparticles coated by a horizontal porphyrin monolayer. , 2008, Chemical communications.

[8]  T. Uruga,et al.  Quick XAFS System using Quasimonochromatic Undulator Radiation at SPring‐8 , 2007 .

[9]  Younan Xia,et al.  Gold nanostructures: engineering their plasmonic properties for biomedical applications. , 2006, Chemical Society reviews.

[10]  Jeffrey T. Miller,et al.  Hydrogen chemisorption on Al2O3-supported gold catalysts. , 2005, The journal of physical chemistry. B.

[11]  D. Ramaker,et al.  Three-site model for hydrogen adsorption on supported platinum particles: influence of support ionicity and particle size on the hydrogen coverage. , 2005, Journal of the American Chemical Society.

[12]  Michele Rossi,et al.  The catalytic activity of "naked" gold particles. , 2004, Angewandte Chemie.

[13]  K. Nobusada Electronic Structure and Photochemical Properties of a Monolayer-Protected Gold Cluster , 2004 .

[14]  T. Sham,et al.  X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: the interplay of size and surface effects. , 2003, Physical review letters.

[15]  Masatake Haruta,et al.  When gold is not noble: catalysis by nanoparticles. , 2003, Chemical record.

[16]  M. G. Warner,et al.  Ligand Exchange Reactions Yield Subnanometer, Thiol-Stabilized Gold Particles with Defined Optical Transitions , 2002 .

[17]  T. Sham,et al.  Tuning the electronic behavior of Au nanoparticles with capping molecules , 2002 .

[18]  J. Turkevich,et al.  Coagulation of Colloidal Gold , 2002 .

[19]  Y. Kitagawa,et al.  DFT studies of interaction between O 2 and Au clusters. The role of anionic surface Au atoms on Au clusters for catalyzed oxygenation , 2001 .

[20]  T. Akita,et al.  Au/TiO2 Nanosized Samples: A Catalytic, TEM, and FTIR Study of the Effect of Calcination Temperature on the CO Oxidation , 2001 .

[21]  Didier Grandjean,et al.  Structure and Bonding of Gold Metal Clusters, Colloids, and Nanowires Studied by EXAFS, XANES, and WAXS , 2001 .

[22]  T. Yonezawa,et al.  Controlled Formation of Smaller Gold Nanoparticles by the Use of Four-Chained Disulfide Stabilizer , 2001 .

[23]  H. Tolentino,et al.  Inter-atomic distance contraction in thiol-passivated gold nanoparticles , 2000 .

[24]  U. Landman,et al.  Electronic Structure of PassivatedAu38(SCH3)24Nanocrystal , 1999 .

[25]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[26]  Toshio Hayashi,et al.  Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2Catalysts in the Presence of Oxygen and Hydrogen , 1998 .

[27]  M. Haruta,et al.  The Relationship between the Structure and Activity of Nanometer Size Gold When Supported on Mg(OH)2 , 1998 .

[28]  Y. Iwasawa,et al.  Quantitative analysis of hydrogen adsorbed on Pt particles on SiO2 in the presence of coadsorbed CO by means of L3-edge X-ray absorption near-edge structure spectroscopy , 1997 .

[29]  Masatake Haruta,et al.  Size- and support-dependency in the catalysis of gold , 1997 .

[30]  Y. Iwasawa,et al.  A new method for quantitative characterization of adsorbed hydrogen on Pt particles by means of Pt L-edge XANES , 1996 .

[31]  Peter P. Edwards,et al.  A new hydrosol of gold clusters. 1. Formation and particle size variation , 1993 .

[32]  H. Hattori,et al.  X-ray absorption spectroscopic study of platinum supported on sulfate ion-treated zirconium oxide , 1993 .

[33]  A. Bianconi,et al.  Relevant role of hydrogen atoms in the XANES of Pd hydride: Evidence of hydrogen induced unoccupied states , 1993 .

[34]  Kuhn,et al.  Charge redistribution in Au-Ag alloys from a local perspective. , 1992, Physical review. B, Condensed matter.

[35]  M. Samant,et al.  Support effects on electronic structure of platinum clusters in Y zeolite , 1991 .

[36]  D. Sayers,et al.  Quantitative technique for the determination of the number of unoccupied d-electron states in a platinum catalyst using the L2,3 x-ray absorption edge spectra , 1984 .

[37]  R. Boese,et al.  Au55[P(C6H5)3]12CI6 — ein Goldcluster ungewöhnlicher Größe , 1981 .

[38]  L. Mattheiss,et al.  Relativistic tight-binding calculation of core-valence transitions in Pt and Au , 1980 .

[39]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .