Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocations dynamics

In this paper we prove the convergence at a large scale of a non-local first order equation to an anisotropic mean curvature motion. This first order equation is an eikonal-type equation with a velocity depending in a non-local way on the solution itself, that arises in the theory of dislocations dynamics. We show that if an anisotropic mean curvature motion is approximated by this type of equations then it is always of variational type, whereas the converse is true only in dimension two

[1]  Olivier Alvarez,et al.  Résolution en temps court d'une équation de Hamilton-Jacobi non locale décrivant la dynamique d'une dislocation , 2004 .

[2]  Motion by curvature by scaling nonlocal evolution equations , 1993 .

[3]  L. M. Brown The self-stress of dislocations and the shape of extended nodes , 1964 .

[4]  G. Barles,et al.  GENERAL RESULTS FOR DISLOCATION TYPE EQUATIONS , 2007 .

[5]  M. Novaga,et al.  Minimal barriers for geometric evolutions , 1997 .

[6]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[7]  Adriana Garroni,et al.  A Variational Model for Dislocations in the Line Tension Limit , 2006 .

[8]  G. Bellettini,et al.  Sharp Interface Limits for Non-Local Anisotropic Interactions , 2001 .

[9]  Régis Monneau,et al.  Dislocation Dynamics: Short-time Existence and Uniqueness of the Solution , 2006 .

[10]  E. Rouy,et al.  Convergence of a first order scheme for a non-local Eikonal equation , 2006 .

[11]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[12]  Steven J. Ruuth Efficient Algorithms for Diffusion-Generated Motion by Mean Curvature , 1998 .

[13]  A. Chambolle,et al.  Approximation of the anisotropic mean curvature flow , 2007 .

[14]  Dejan Slepčev,et al.  Nonlocal front propagation problems in bounded domains with Neumann‐type boundary conditions and applications , 2004 .

[15]  J. Hirth,et al.  Theory of Dislocations (2nd ed.) , 1983 .

[16]  Adriana Garroni,et al.  Γ-Limit of a Phase-Field Model of Dislocations , 2005, SIAM J. Math. Anal..

[17]  L. Evans Convergence of an algorithm for mean curvature motion , 1993 .

[18]  Elisabetta Carlini,et al.  A convergent scheme for a non local Hamilton Jacobi equation modelling dislocation dynamics , 2006, Numerische Mathematik.

[19]  P. Cardaliaguet,et al.  Existence and uniqueness for dislocation dynamics with nonnegative velocity , 2005 .

[20]  Yun-Gang Chen,et al.  Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations , 1989 .

[21]  Some aspects of De Giorgi's barriers for geometric evolutions , 2000 .

[22]  David M. Barnett,et al.  The self-force on a planar dislocation loop in an anisotropic linear-elastic medium , 1976 .

[23]  Guy Barles,et al.  Nonlocal First-Order Hamilton–Jacobi Equations Modelling Dislocations Dynamics , 2006 .

[24]  A. K. Head Unstable Dislocations in Anisotropic Crystals , 1967 .

[25]  Nicolas Forcadel,et al.  Dislocation dynamics with a mean curvature term: short time existence and uniqueness , 2008, Differential and Integral Equations.

[26]  L. Schwartz Théorie des distributions , 1966 .

[27]  Dejan Slepčev,et al.  Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions , 2003 .

[28]  G. Barles,et al.  Exit Time Problems in Optimal Control and Vanishing Viscosity Method , 1988 .

[29]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[30]  G. Barles,et al.  Front propagation and phase field theory , 1993 .

[31]  G. Barles,et al.  A Simple Proof of Convergence for an Approximation Scheme for Computing Motions by Mean Curvature , 1995 .

[32]  Guy Barles,et al.  Some counterexamples on the asymptotic behavior of the solutions of Hamilton–Jacobi equations , 2000 .

[33]  H. Ishii Hamilton-Jacobi Equations with Discontinuous Hamiltonians on Arbitrary Open Sets , 1985 .

[34]  D. Rodney,et al.  Phase eld methods and dislocations , 2001 .

[35]  G. Barles,et al.  A New Approach to Front Propagation Problems: Theory and Applications , 1998 .

[36]  P. Souganidis,et al.  Threshold dynamics type approximation schemes for propagating fronts , 1999 .

[37]  J. Bogdanoff,et al.  On the Theory of Dislocations , 1950 .

[38]  G. Barles Solutions de viscosité des équations de Hamilton-Jacobi , 1994 .

[39]  Panagiotis E. Souganidis,et al.  Stochastic Ising models and anisotropic front propagation , 1997 .

[40]  David J. Goodman,et al.  Personal Communications , 1994, Mobile Communications.