A general approach for nonparametric fitting of functions and their derivatives with applications to linear circuits identification

The problem of the estimation of functions and their derivatives from noisy observations is discussed. The study is motivated by the interest in nonparametric identification of linear circuits. A general algorithm is proposed and its asymptotic properties are investigated. Three special cases of this algorithm-derived from orthogonal series, the Parzen kernels and the k_n nearest neighbor rules-are presented. In the each case the mean square error convergence and the strong convergence is established. The best speed of convergence is found under some assumptions.

[1]  H. Müller,et al.  Estimating regression functions and their derivatives by the kernel method , 1984 .

[2]  H. Müller,et al.  Kernel estimation of regression functions , 1979 .

[3]  L. Rutkowski On-line identification of time-varying systems by nonparametric techniques , 1982 .

[4]  S. Yakowitz,et al.  Contributions to the Theory of Nonparametric Regression, with Application to System Identification , 1979 .

[5]  L. Rutkowski Real-time identification of time-varying systems by non-parametric algorithms based on Parzen kernels , 1985 .

[6]  S. Nagaev,et al.  Probability inequalities for sums of independent random variables with values in a Banach space , 1971 .

[7]  L. Rutkowski Nonparametric identification of quasi-stationary systems , 1985 .

[8]  Pi-Erh Lin,et al.  Nonparametric estimation of a regression function , 1981 .

[9]  A. Georgiev Nonparametric system identification by kernel methods , 1984 .

[10]  A. Georgiev Kernel estimates of functions and their derivatives with applications , 1984 .

[11]  W. Greblicki NONPARAMETRIC SYSTEM IDENTIFICATION BY ORTHOGONAL SERIES , 1979 .

[12]  G. Bennett Probability Inequalities for the Sum of Independent Random Variables , 1962 .

[13]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[14]  Alexander A. Georgiev,et al.  A nonparametric algorithm for identification of linear dynamic SISO systems of unknown order , 1984 .

[15]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers , 1961 .

[16]  Lossek Rutkowski,et al.  Nonparametric Identification of Weighting Function by Orthogonal Series Method , 1982, 1982 American Control Conference.

[17]  L. Rutkowski On nonparametric identification with prediction of time-varying systems , 1984 .

[18]  S. Yakowitz,et al.  A comparison of kriging with nonparametric regression methods , 1985 .

[19]  G. Collomb Estimation Non-paramétrique de la Régression: Revue Bibliographique@@@Estimation Non-parametrique de la Regression: Revue Bibliographique , 1981 .

[20]  Daniel Graupe,et al.  Identification of Systems , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[21]  Leszek Rutkowski,et al.  On system identification by nonparametric function fitting , 1982 .

[22]  G. Banon Nonparametric Identification for Diffusion Processes , 1978 .

[23]  A. Krzyżak,et al.  Non-parametric identification of a memoryless system with a cascade structure , 1979 .

[24]  Ewaryst Rafajłowicz,et al.  Nonparametric algorithm for identification of weakly nonlinear static distributed-parameter systems , 1984 .

[25]  Ewaryst Rafajłowicz,et al.  Nonparametric algorithm for input signals identification in static distributed-parameter systems , 1984 .