Sensitivity analysis in HMMs with application to likelihood maximization
暂无分享,去创建一个
Rémi Munos | Pierre-Arnaud Coquelin | Romain Deguest | R. Munos | Pierre-Arnaud Coquelin | Romain Deguest
[1] Carlos S. Kubrusly,et al. Stochastic approximation algorithms and applications , 1973, CDC 1973.
[2] Paul Glasserman,et al. Gradient Estimation Via Perturbation Analysis , 1990 .
[3] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[4] G. Kitagawa. Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .
[5] F. Gland,et al. Exponential Forgetting and Geometric Ergodicity in Hidden Markov Models , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.
[6] A Orman,et al. Optimization of Stochastic Models: The Interface Between Simulation and Optimization , 2012, J. Oper. Res. Soc..
[7] Laurent Mevel,et al. Exponential Forgetting and Geometric Ergodicity in Hidden Markov Models , 2000, Math. Control. Signals Syst..
[8] R. Douc,et al. Asymptotics of the maximum likelihood estimator for general hidden Markov models , 2001 .
[9] Geir Storvik,et al. Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..
[10] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[11] A. Doucet,et al. Parameter estimation in general state-space models using particle methods , 2003 .
[12] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[13] Johann Fichou,et al. Particle-based methods for parameter estimation and tracking: Numerical experiments , 2004 .
[14] R. Douc,et al. Limit theorems for weighted samples with applications to sequential Monte Carlo methods , 2005, math/0507042.
[15] Arnaud Doucet,et al. Particle methods for optimal filter derivative: application to parameter estimation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..
[16] Eric Moulines,et al. On the use of particle filtering for maximum likelihood parameter estimation , 2005, 2005 13th European Signal Processing Conference.
[17] A. Papavasiliou. A uniformly convergent adaptive particle filter , 2005 .
[18] Arnaud Doucet,et al. Particle Filter as A Controlled Markov Chain For On-Line Parameter Estimation in General State Space Models , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.
[19] Rogemar S. Mamon,et al. Hidden Markov Models In Finance , 2007 .
[20] P. Moral,et al. Sharp Propagation of Chaos Estimates for Feynman–Kac Particle Models , 2007 .
[21] Rémi Munos,et al. Particle Filter-based Policy Gradient in POMDPs , 2008, NIPS.