Best Robin Parameters for Optimized Schwarz Methods at Cross Points

Optimized Schwarz methods are domain decomposition methods in which a large-scale PDE problem is solved by subdividing it into smaller subdomain problems, solving the subproblems in parallel, and iterating until one obtains a global solution that is consistent across subdomain boundaries. Fast convergence can be obtained if Robin conditions are used along subdomain boundaries, provided that the Robin parameters $p$ are chosen correctly. In the case of second-order elliptic problems such as the Poisson equation, it is well known for two-subdomain problems without overlap that the optimal choice is $p = O(h^{-1/2})$ (where $h$ is the mesh size), with the resulting method having a convergence factor of $\rho = 1 - O(h^{1/2})$. However, when cross points are present, i.e., when several subdomains meet at a single point, this choice leads to a divergent method. In this article, we show for a model problem that convergence can occur only if $p = O(h^{-1})$ at the cross point; thus, a different scaling of the Ro...

[1]  Martin J. Gander,et al.  Optimized Schwarz Methods , 2006, SIAM J. Numer. Anal..

[2]  Qingping Deng Timely Communicaton: An Analysis for a Nonoverlapping Domain Decomposition Iterative Procedure , 1997, SIAM J. Sci. Comput..

[3]  Frédéric Nataf,et al.  ABSORBING BOUNDARY CONDITIONS IN BLOCK GAUSS–SEIDEL METHODS FOR CONVECTION PROBLEMS , 1996 .

[4]  M. Gander,et al.  Why Restricted Additive Schwarz Converges Faster than Additive Schwarz , 2003 .

[5]  Frédéric Nataf,et al.  Optimal Interface Conditions for Domain Decomposition Methods , 1994 .

[6]  Frédéric Nataf,et al.  Improved Interface Conditions for 2D Domain Decomposition with Corners: Numerical Applications , 2009, J. Sci. Comput..

[7]  Frédéric Nataf,et al.  The optimized order 2 method : Application to convection-diffusion problems , 2001, Future Gener. Comput. Syst..

[8]  Martin J. Gander,et al.  Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation , 2003, SIAM J. Numer. Anal..

[9]  S. H. Lui,et al.  Convergence estimates for an optimized Schwarz method for PDEs with discontinuous coefficients , 2009, Numerical Algorithms.

[10]  Thomas Hagstrom,et al.  Numerical Experiments on a Domain Decomposition Algorithm for Nonlinear Elliptic Boundary Value Problems , 1988 .

[11]  Frédéric Nataf,et al.  FACTORIZATION OF THE CONVECTION-DIFFUSION OPERATOR AND THE SCHWARZ ALGORITHM , 1995 .

[12]  Frédéric Nataf,et al.  Symmetrized Method with Optimized Second-Order Conditions for the Helmholtz Equation , 1998 .

[13]  Sébastien Loisel,et al.  Condition Number Estimates for the Nonoverlapping Optimized Schwarz Method and the 2-Lagrange Multiplier Method for General Domains and Cross Points , 2013, SIAM J. Numer. Anal..

[14]  Frédéric Nataf,et al.  Méthode de décomposition de domaine pour l'équation d'advection-diffusion , 1991 .

[15]  Wei-Pai Tang,et al.  Generalized Schwarz Splittings , 1992, SIAM J. Sci. Comput..

[16]  Hongkai Zhao,et al.  Absorbing boundary conditions for domain decomposition , 1998 .

[17]  Frédéric Nataf,et al.  The Best Interface Conditions for Domain Decomposition Methods : Absorbing Boundary Conditions , .

[18]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[19]  Martin J. Gander,et al.  Schwarz Methods over the Course of Time , 2008 .

[20]  Wei-Pai Tang,et al.  An Overdetermined Schwarz Alternating Method , 1996, SIAM J. Sci. Comput..

[21]  Frédéric Nataf,et al.  Improved interface conditions for 2D domain decomposition with corners: a theoretical determination , 2008 .

[22]  Frédéric Nataf,et al.  The optimized order 2 method: application to convection-diffusion problems , 1999 .

[23]  Amik St-Cyr,et al.  Optimized Schwarz Preconditioning for SEM Based Magnetohydrodynamics , 2008, 0805.0025.

[24]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[25]  Martin J. Gander,et al.  On the Applicability of Lions' Energy Estimates in the Analysis of Discrete Optimized Schwarz Methods with Cross Points , 2013, Domain Decomposition Methods in Science and Engineering XX.