TRIM5α Restricts Flavivirus Replication by Targeting the Viral Protease for Proteasomal Degradation

[1]  J. Luban,et al.  Cyclophilin A protects HIV-1 from restriction by human TRIM5α , 2019, Nature Microbiology.

[2]  M. Malim,et al.  Immunoproteasome activation enables human TRIM5α restriction of HIV-1 , 2019, Nature Microbiology.

[3]  L. James,et al.  Trivalent RING Assembly on Retroviral Capsids Activates TRIM5 Ubiquitination and Innate Immune Signaling , 2018, Cell host & microbe.

[4]  C. Tremblay,et al.  HIV-1 capsids from B27/B57+ elite controllers escape Mx2 but are targeted by TRIM5α, leading to the induction of an antiviral state , 2018, PLoS pathogens.

[5]  C. Broeckling,et al.  Unique Francisella Phosphatidylethanolamine Acts as a Potent Anti-Inflammatory Lipid , 2018, Journal of Innate Immunity.

[6]  Kristofor J. Webb,et al.  Dengue viruses cleave STING in humans but not in nonhuman primates, their presumed natural reservoir , 2018, eLife.

[7]  J. Moss,et al.  TRIM23 mediates virus-induced autophagy via activation of TBK1 , 2017, Nature Microbiology.

[8]  P. Nuttall,et al.  Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface , 2017, Front. Cell. Infect. Microbiol..

[9]  R. Mohana-Borges,et al.  Systems Biology Reveals NS4B-Cyclophilin A Interaction: A New Target to Inhibit YFV Replication. , 2017, Journal of proteome research.

[10]  S. Weaver,et al.  Flavivirus transmission focusing on Zika. , 2017, Current opinion in virology.

[11]  N. Kootstra,et al.  Receptor usage dictates HIV-1 restriction by human TRIM5α in dendritic cell subsets , 2016, Nature.

[12]  S. Best The Many Faces of the Flavivirus NS5 Protein in Antagonism of Type I Interferon Signaling , 2016, Journal of Virology.

[13]  H. Ebihara,et al.  Alisporivir Has Limited Antiviral Effects Against Ebola Virus Strains Makona and Mayinga. , 2016, The Journal of infectious diseases.

[14]  T. Pierson,et al.  A CRISPR screen defines a signal peptide processing pathway required by flaviviruses , 2016, Nature.

[15]  A. Gamarnik,et al.  A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production , 2016, Journal of Virology.

[16]  E. Campbell,et al.  TRIM5α-Mediated Ubiquitin Chain Conjugation Is Required for Inhibition of HIV-1 Reverse Transcription and Capsid Destabilization , 2015, Journal of Virology.

[17]  L. Berthoux,et al.  Restriction Factors in HIV-1 Disease Progression. , 2015, Current HIV research.

[18]  P. Uchil,et al.  TRIM5 Retroviral Restriction Activity Correlates with the Ability To Induce Innate Immune Signaling , 2015, Journal of Virology.

[19]  P. Autissier,et al.  Evolutionary and Functional Analysis of Old World Primate TRIM5 Reveals the Ancient Emergence of Primate Lentiviruses and Convergent Evolution Targeting a Conserved Capsid Interface , 2015, PLoS pathogens.

[20]  Dahai Luo,et al.  The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. , 2015, Antiviral research.

[21]  V. Deretic,et al.  TRIM proteins regulate autophagy: TRIM5 is a selective autophagy receptor mediating HIV-1 restriction , 2014, Autophagy.

[22]  F. Kirchhoff,et al.  TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. , 2014, Developmental cell.

[23]  A. García-Sastre,et al.  TRIMmunity: the roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity. , 2014, Journal of molecular biology.

[24]  Fan Wu,et al.  TRIM5 alpha Drives SIVsmm Evolution in Rhesus Macaques , 2013, PLoS pathogens.

[25]  S. Kutluay,et al.  Fates of Retroviral Core Components during Unrestricted and TRIM5-Restricted Infection , 2013, PLoS pathogens.

[26]  S. Aguirre,et al.  DENV Inhibits Type I IFN Production in Infected Cells by Cleaving Human STING , 2012, PLoS pathogens.

[27]  P. Gething,et al.  Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus , 2012, PLoS neglected tropical diseases.

[28]  Yi-Ling Lin,et al.  Dengue Virus Targets the Adaptor Protein MITA to Subvert Host Innate Immunity , 2012, PLoS pathogens.

[29]  J. Luban TRIM5 and the Regulation of HIV-1 Infectivity , 2012, Molecular biology international.

[30]  Kyudong Han,et al.  Identification of a Genomic Reservoir for New TRIM Genes in Primate Genomes , 2011, PLoS genetics.

[31]  M. Bloom,et al.  TRIM79α, an interferon-stimulated gene product, restricts tick-borne encephalitis virus replication by degrading the viral RNA polymerase. , 2011, Cell host & microbe.

[32]  Andrea Cimarelli,et al.  A simple, versatile and efficient method to genetically modify human monocyte-derived dendritic cells with HIV-1–derived lentiviral vectors , 2011, Nature Protocols.

[33]  Jeremy Luban,et al.  TRIM5 is an innate immune sensor for the retrovirus capsid lattice , 2011, Nature.

[34]  J. Sodroski,et al.  Hexagonal assembly of a restricting TRIM5α protein , 2010, Proceedings of the National Academy of Sciences.

[35]  Adolfo García-Sastre,et al.  Viral tricks to grid-lock the type I interferon system , 2010, Current Opinion in Microbiology.

[36]  S. Vasudevan,et al.  Flexibility between the Protease and Helicase Domains of the Dengue Virus NS3 Protein Conferred by the Linker Region and Its Functional Implications , 2010, The Journal of Biological Chemistry.

[37]  J. Luban,et al.  p62/Sequestosome-1 Associates with and Sustains the Expression of Retroviral Restriction Factor TRIM5α , 2010, Journal of Virology.

[38]  A. Barrett,et al.  The NS5 Protein of the Virulent West Nile Virus NY99 Strain Is a Potent Antagonist of Type I Interferon-Mediated JAK-STAT Signaling , 2010, Journal of Virology.

[39]  R. Bartenschlager,et al.  Essential Role of Cyclophilin A for Hepatitis C Virus Replication and Virus Production and Possible Link to Polyprotein Cleavage Kinetics , 2009, PLoS pathogens.

[40]  P. Shi,et al.  Cyclosporine Inhibits Flavivirus Replication through Blocking the Interaction between Host Cyclophilins and Viral NS5 Protein , 2009, Antimicrobial Agents and Chemotherapy.

[41]  M. Emerman,et al.  An expanded clade of rodent Trim5 genes. , 2009, Virology.

[42]  Matthew H. Stremlau Why Old World Monkeys Are Resistant to HIV-1 , 2007, Science.

[43]  M. Emerman,et al.  Restriction of an Extinct Retrovirus by the Human TRIM5α Antiviral Protein , 2007, Science.

[44]  P. Bieniasz,et al.  Generation of Simian-Tropic HIV-1 by Restriction Factor Evasion , 2006, Science.

[45]  D. Pérez-Caballero,et al.  Antiretroviral potential of human tripartite motif-5 and related proteins. , 2006, Virology.

[46]  J. Luban Cyclophilin A, TRIM5, and Resistance to Human Immunodeficiency Virus Type 1 Infection , 2006, Journal of Virology.

[47]  J. Sodroski,et al.  Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. , 2006, Virology.

[48]  Joseph Sodroski,et al.  Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5alpha restriction factor. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. Doms,et al.  West Nile Virus Discriminates between DC-SIGN and DC-SIGNR for Cellular Attachment and Infection , 2006, Journal of Virology.

[50]  M. Bloom,et al.  Inhibition of Interferon-Stimulated JAK-STAT Signaling by a Tick-Borne Flavivirus and Identification of NS5 as an Interferon Antagonist , 2005, Journal of Virology.

[51]  Michael Emerman,et al.  Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  J. Luban,et al.  Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1 , 2004, Nature.

[53]  C. M. Owens,et al.  The cytoplasmic body component TRIM5α restricts HIV-1 infection in Old World monkeys , 2004, Nature.

[54]  P. Bieniasz,et al.  Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J. Mackenzie,et al.  Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced membrane structures , 1997, Journal of virology.

[56]  W. Sundquist,et al.  Crystal Structure of Human Cyclophilin A Bound to the Amino-Terminal Domain of HIV-1 Capsid , 1996, Cell.

[57]  N. Mechti,et al.  Molecular Cloning of a New Interferon-induced Factor That Represses Human Immunodeficiency Virus Type 1 Long Terminal Repeat Expression (*) , 1995, The Journal of Biological Chemistry.

[58]  Jeremy Luban,et al.  Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B , 1993, Cell.

[59]  E. G. Westaway,et al.  Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication. , 1985, Virology.

[60]  P. Simmonds The origin of hepatitis C virus. , 2013, Current topics in microbiology and immunology.

[61]  Charles M. Rice,et al.  Flaviviridae :T he Viruses and Their Replication , 2007 .