Confocal fluorescence microscopy of plant cells

SummaryThe confocal laser scanning microscope (CLSM) has become a vital instrument for the examination of subcellular structure, especially in fluorescently stained cells. Because of its ability to markedly reduce out-of-focus flare, when compared to the conventional wide-field fluorescence microscope, the CLSM provides a substantial improvement in resolution along the “z” axis and permits optical sectioning of cells. These developments have been particularly helpful for the investigation of plant cells and tissues, which because of their shape, size, and optical properties have been difficult to analyze at high resolution by conventional means. We review the contribution that the CLSM has made to the study of plant cells. We first consider the principle of operation of the CLSM, including a discussion of image processing, and of lasers and appropriate fluorescent dyes. We then summarize several studies of both fixed and live plant cells in which the instrument has provided new or much clearer information about cellular substructure than has been possible heretofore. Attention is given to the visualization of different components, including especially the cytoskeleton, endomembranes, nuclear components, and relevant ions, and their changes in relationship to physiological and developmental processes. We conclude with an effort to anticipate advances in technology that will improve and extend the performance of the CLSM. In addition to the usual bibliography, we provide internet addresses for information about the CLSM.

[1]  S. Hell,et al.  Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index , 1993 .

[2]  B. Satiat-Jeunemaitre,et al.  Golgi-membrane dynamics are cytoskeleton dependent: A study on Golgi stack movement induced by brefeldin A , 1996, Protoplasma.

[3]  E. Meyerowitz,et al.  Confocal microscopy of the shoot apex. , 1995, Methods in cell biology.

[4]  A. Trewavas,et al.  Role of cytosolic free calcium in the reorientation of pollen tube growth , 1994 .

[5]  M. Cresti,et al.  Ultrastructure of the cytoskeleton in freeze-substituted pollen tubes ofNicotiana alata , 1987, Protoplasma.

[6]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[7]  A. Trewavas,et al.  Localized Apical Increases of Cytosolic Free Calcium Control Pollen Tube Orientation. , 1996, The Plant cell.

[8]  R. Funada,et al.  Dynamic changes in the arrangement of cortical microtubules in conifer tracheids during differentiation. , 1995, Planta.

[9]  Carol J. Cogswell,et al.  High-resolution, multiple optical mode confocal microscope: I. System design, image acquisition and 3D visualization , 1994, Electronic Imaging.

[10]  R. Overall,et al.  Cortical microtubule reorientation in higher plants: dynamics and regulation , 1996 .

[11]  H. Pelham,et al.  Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum. , 1992, Journal of cell science.

[12]  E. Hartmann,et al.  4 – Role of Calcium Ions in Tip Growth of Pollen Tubes and Moss Protonema Cells , 1990 .

[13]  R. C. Brown,et al.  Pollen development in orchids , 1991, Protoplasma.

[14]  J. Derksen,et al.  Development and cellular organization ofPinus sylvesfris pollen tubes , 1996, Sexual Plant Reproduction.

[15]  C. Lloyd Why should stationary plant cells have such dynamic microtubules? , 1994, Molecular biology of the cell.

[16]  B. D. Graaf,et al.  Microtubules and actin filaments co-localize extensively in non-fixed cells of tobacco , 1991, Protoplasma.

[17]  J. Brown,et al.  The organization of spliceosomal components in the nuclei of higher plants. , 1995, Journal of cell science.

[18]  D. M. Shotton,et al.  Confocal scanning optical microscopy and its applications for biological specimens , 1989 .

[19]  D. Demason,et al.  Characteristics of α-Amylase during Germination of Two High-Sugar Sweet Corn Cultivars of Zea mays L. , 1992 .

[20]  R. C. Brown,et al.  Methods in plant immunolight microscopy. , 1995, Methods in cell biology.

[21]  A. Hofmann,et al.  Reorganization of the endoplasmic reticulum in epidermal cells of onion bulb scales after cold stress: Involvement of cytoskeletal elements , 1989, Planta.

[22]  P. K. Hepler,et al.  Distribution of Membranes and the Cytoskeleton During Cell Plate Formation in Pollen Mother Cells of Tradescantia , 1991 .

[23]  H. Quader Formation and disintegration of cisternae of the endoplasmic reticulum visualized in live cells by conventional fluorescence and confocal laser scanning microscopy: Evidence for the involvement of calcium and the cytoskeleton , 1990, Protoplasma.

[24]  R. C. Brown,et al.  Nuclear cytoplasmic domains, microtubules and organelles in microsporocytes of the slipper orchid Cypripedium californicum A. Gray dividing by simultaneous cytokinesis , 1996, Sexual Plant Reproduction.

[25]  V. Chevrier,et al.  The anti-centrosome monoclonal antibody 6C6 reacts with a plasma membrane-associated polypeptide of 77 kDa fromNicotiana tabacum pollen tubes , 1996, Protoplasma.

[26]  O. Olsen,et al.  Polarization predicts the pattern of cellularization in cereal endosperm , 1996, Protoplasma.

[27]  D. M. Shotton Electronic light microscopy : the principles and practice of video-enhanced contrast, digital intensified fluorescence, and confocal scanning light microscopy , 1993 .

[28]  C. Gehring,et al.  Gibberellic acid induces cytoplasmic acidification in maize coleoptiles , 1994, Planta.

[29]  A. Trewavas,et al.  Imaging and measurement of cytosolic free calcium in plant and fungal cells , 1992 .

[30]  R. Williamson Orientation of Cortical Microtubules in Interphase Plant Cells , 1991 .

[31]  R. C. Brown,et al.  Immunofluorescent staining of microtubules in plant tissues: improved embedding and sectioning techniques using polyethylene glycol (PEG) and Steedman's wax , 1989 .

[32]  Badrinath Roysam,et al.  Light Microscopic Images Reconstructed by Maximum Likelihood Deconvolution , 1995 .

[33]  B. Lemmon,et al.  Pollen Development in Orchids. 5. A Generative Cell Domain Involved in Spatial Control of the Hemispherical Cell Plate , 1991 .

[34]  D. Callaham,et al.  Tip-localized calcium entry fluctuates during pollen tube growth. , 1996, Developmental biology.

[35]  Guy Cox,et al.  Trends in confocal microscopy , 1993 .

[36]  A. Valster,et al.  Caffeine inhibition of cytokinesis: effect on the phragmoplast cytoskeleton in livingTradescantia stamen hair cells , 1997, Protoplasma.

[37]  M. Wessendorf,et al.  Multicolor laser scanning confocal immunofluorescence microscopy: practical application and limitations. , 1993, Methods in cell biology.

[38]  D. Agard,et al.  Fluorescence microscopy in three dimensions. , 1989, Methods in cell biology.

[39]  K. Hasenstein,et al.  Organization of cortical microtubules in graviresponding maize roots , 1993, Planta.

[40]  W. Webb,et al.  The green fluorescent protein as a marker to visualize plant mitochondria in vivo. , 1997, The Plant journal : for cell and molecular biology.

[41]  B. Gunning,et al.  Cytoskeletal dynamics in living plant cells , 1993 .

[42]  P. Hepler,et al.  Microtubule and F-actin dynamics at the division site in living Tradescantia stamen hair cells , 1992 .

[43]  G. Wasteneys,et al.  Actin in living and fixed characean internodal cells: identification of a cortical array of fine actin strands and chloroplast actin rings , 1996, Protoplasma.

[44]  N Nanninga,et al.  Three-dimensional chromosome arrangement of Crepis capillaris in mitotic prophase and anaphase as studied by confocal scanning laser microscopy. , 1989, Journal of cell science.

[45]  J. Haseloff,et al.  GFP in plants. , 1995, Trends in genetics : TIG.

[46]  Peter Shaw,et al.  Different patterns of rDNA distribution in Pisum sativum nucleoli correlate with different levels of nucleolar activity , 1993 .

[47]  Peter Shaw,et al.  Gibberellic‐acid‐induced reorientation of cortical microtubules in living plant cells , 1996 .

[48]  P. K. Hepler,et al.  Nuclear concentration and mitotic dispersion of the essential cell cycle protein, p13suc1, examined in living cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[49]  G. J. Brakenhoff,et al.  Image processing techniques for 3‐D chromosome analysis , 1990 .

[50]  Mark D. Fricker,et al.  Aberration control in quantitative imaging of botanical specimens by multidimensional fluorescence microscopy , 1996 .

[51]  D. Menzel Cell differentiation and the cytoskeleton in Acetabularia. , 1994, The New phytologist.

[52]  S. Macnaughton,et al.  Physical stabilization and confocal microscopy of bacteria on roots using 16S rRNA targeted, fluorescent-labeled oligonucleotide probes , 1996 .

[53]  W. Webb,et al.  Measuring Serotonin Distribution in Live Cells with Three-Photon Excitation , 1997, Science.

[54]  F. Franklin,et al.  Recombinant stigmatic self‐incompatibility (S‐) protein elicits a Ca2+ transient in pollen of Papaver rhoeas , 1995 .

[55]  G. Wasteneys,et al.  Injury toNitella internodal cells alters microtubule organization but microtubules are not involved in the wound response , 1994, Protoplasma.

[56]  M. Steer,et al.  Regulation of Pollen Tube Growth , 1995 .

[57]  M. Fredrikson THE DEVELOPMENT OF THE FEMALE GAMETOPHYTE OF EPIPACTIS (ORCHIDACEAE) AND ITS INFERENCE FOR REPRODUCTIVE ECOLOGY , 1992 .

[58]  H. Guyader,et al.  Dedifferentiation and microtubule reorganization in the apical cell protoplast ofSphacelaria (Phaeophyceae) , 1994, Protoplasma.

[59]  P. Lum,et al.  DiOC6 staining reveals organelle structure and dynamics in living yeast cells. , 1993, Cell motility and the cytoskeleton.

[60]  D. Menzel Dynamics and pharmacological perturbations of the endoplasmic reticulum in the unicellular green alga Acetabularia. , 1994, European journal of cell biology.

[61]  M. Wada,et al.  Cytoskeletal aspects of nuclear migration during tip-growth in the fernAdiantum protonemal cell , 1995, Protoplasma.

[62]  M. Osumi,et al.  Relationship of actin organization to growth in the two forms of the dimorphic yeastCandida tropicalis , 1992, Protoplasma.

[63]  B. C. Gibbon,et al.  Cytosolic pH Gradients Associated with Tip Growth , 1994, Science.

[64]  A. Kriete,et al.  Image Contrast in Confocal Light Microscopy , 1990 .

[65]  H. Quader,et al.  Myosin in onion (Allium cepa) bulb scale epidermal cells : involvement in dynamics of organelles and endoplasmic reticulum , 1994 .

[66]  S. Hell,et al.  Lens Aberrations in Confocal Fluorescence Microscopy , 1995 .

[67]  K. Oparka,et al.  Dye-coupling in the root epidermis of Arabidopsis is progressively reduced during development , 1994 .

[68]  D. Verma,et al.  Vesicle dynamics during cell-plate formation in plants , 1996 .

[69]  P. Wadsworth,et al.  Dynamics of Microfilaments are Similar, but Distinct from Microtubules During Cytokinesis in Living, Dividing Plant-Cells , 1993 .

[70]  C. Cogswell Imaging Immunogold Labels with Confocal Microscopy , 1995 .

[71]  R. C. Brown,et al.  Organisation of microtubules and actin filaments in the cortex of differentiating Selaginella guard cells , 1993, Protoplasma.

[72]  P. K. Hepler,et al.  Ultrastructure of freeze-substituted pollen tubes ofLilium longiflorum , 1992, Protoplasma.

[73]  D. Rawlins,et al.  The point‐spread function of a confocal microscope: its measurement and use in deconvolution of 3‐D data , 1991 .

[74]  J. Jernstedt,et al.  Spatial congruence between exine pattern, microtubules and endomembranes in Vigna pollen , 1995, Sexual Plant Reproduction.

[75]  W. Schul,et al.  Fluorescent labelling of nascent RNA reveals nuclear transcription domains throughout plant cell nuclei , 1996, Protoplasma.

[76]  T. Murata Organization of Microtubules during the Transition from Cytokinesis to Interphase in Protonemal Cells of Adiantum capillus-veneris L. , 1996 .

[77]  P. Shaw,et al.  Localization of telomeres in plant interphase nuclei by in situ hybridization and 3D confocal microscopy , 1991, Chromosoma.

[78]  Robert H. Webb,et al.  Bibliography of Confocal Microscopy , 2006 .

[79]  W. Webb,et al.  Three‐dimensionally resolved NAD(P)H cellular metabolic redox imaging of the in situ cornea with two‐photon excitation laser scanning microscopy , 1995, Journal of microscopy.

[80]  S. Emr,et al.  A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast , 1995, The Journal of cell biology.

[81]  P. Shaw,et al.  Dynamic reorientation of cortical microtubules, from transverse to longitudinal, in living plant cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[82]  A. Schulz,et al.  Living sieve cells of conifers as visualized by confocal, laser-scanning fluorescence microscopy , 1992, Protoplasma.

[83]  Y. Mineyuki,et al.  A comparative study on stainability of preprophase bands by the PSTAIR antibody , 1996, Journal of Plant Research.

[84]  V. Chen Non-Laser Light Sources , 1995 .

[85]  R. Quatrano,et al.  Localization of Actin mRNA during the Establishment of Cell Polarity and Early Cell Divisions in Fucus Embryos. , 1996, The Plant cell.

[86]  D. Verma,et al.  Phragmoplastin, a dynamin‐like protein associated with cell plate formation in plants. , 1996, The EMBO journal.

[87]  S. Zee,et al.  Changes in the pattern of organization of the microtubular cytoskeleton during megasporogenesis inCymbidium sinense , 1995, Protoplasma.

[88]  W. Thomson,et al.  The vacuolar-tubular continuum in living trichomes of chickpea (Cicer arietinum) provides a rapid means of solute delivery from base to tip , 1996, Protoplasma.

[89]  R. C. Brown,et al.  Microtubule arrays during mitosis in monoplastidic root tip cells ofIsoetes , 1992, Protoplasma.

[90]  H. Joshi,et al.  gamma-Tubulin in Arabidopsis: gene sequence, immunoblot, and immunofluorescence studies. , 1994, The Plant cell.

[91]  Zhanjiang Liu,et al.  Pontentiometric Cyanine Dyes Are Sensitive Probes for Mitochondria in Intact Plant Cells1 , 1987 .

[92]  P. Hepler,et al.  Behavior of Microtubules in Living Plant Cells , 1996, Plant physiology.

[93]  T. Amstel,et al.  Basket-shaped structures formed by F-actin in the nuclei of elongating cells of Nicotiana tabacum , 1993 .

[94]  P. K. Hepler,et al.  Actin microfilaments are associated with the migrating nucleus and the cell cortex in the green alga Micrasterias. Studies on living cells. , 1994, Journal of cell science.

[95]  J. D. De Mey,et al.  The three-dimensional architecture of the mitotic spindle, analyzed by confocal fluorescence and electron microscopy. , 1991, Journal of electron microscopy technique.

[96]  G. N. Drews,et al.  Megagametogenesis in Arabidopsis wild type and the Gf mutant , 1997, Sexual Plant Reproduction.

[97]  P. K. Hepler,et al.  Caffeine inhibition of cytokinesis: Dynamics of cell plate formation-deformationin vivo , 1985, Protoplasma.

[98]  B. Lemmon,et al.  Pollen mitosis in the slipper orchid Cypripedium fasciculatum , 1994, Sexual Plant Reproduction.

[99]  Mark D. Fricker,et al.  Wavelength considerations in confocal microscopy of botanical specimens , 1992 .

[100]  S. J. Wright,et al.  Confocal fluorescence microscopy and three-dimensional reconstruction. , 1991, Journal of electron microscopy technique.

[101]  P. Shaw,et al.  Localization of 5 S genes and transcripts in Pisum sativum nuclei. , 1993, Journal of cell science.

[102]  O. Olsen,et al.  Endosperm Development in Barley: Microtubule Involvement in the Morphogenetic Pathway. , 1994, The Plant cell.

[103]  B. Gunning,et al.  Immunofluorescence microscopy of organized microtubule arrays in structurally stabilized meristematic plant cells , 1981, The Journal of cell biology.

[104]  A. Hardham,et al.  Dynamic reorganization of microtubules and microfilaments in flax cells during the resistance response to flax rust infection , 1994, Planta.

[105]  D. Menzel,et al.  Actomyosin‐based motility of endoplasmic reticulum and chloroplasts in Vallisneria mesophyll cells * , 1995, Biology of the cell.

[106]  E. Hartmann,et al.  Structural basis for the red light induced repolarization of tip growth in caulonema cells ofCeratodon purpureus , 1996, Protoplasma.

[107]  D. Miller,et al.  Actin microfilaments do not form a dense meshwork inLilium longiflorum pollen tube tips , 1996, Protoplasma.

[108]  T. Nagata,et al.  The origin and organization of cortical microtubules during the transition between M and G1 phases of the cell cycle as observed in highly synchronized cells of tobacco BY-2 , 1994, Planta.

[109]  H. M. Voort,et al.  Restoration of confocal images for quantitative image analysis , 1995 .

[110]  B. Lemmon,et al.  Establishment of division plane and mitosis in monoplastidic guard mother cells of Selaginella , 1992 .

[111]  D. Demandolx,et al.  Multicolour analysis and local image correlation in confocal microscopy , 1997 .

[112]  M. Fricker,et al.  Confocal Fluorescence Ratio Imaging of pH in Plant Cells , 1993 .

[113]  K. Carlsson,et al.  Confocal scanning laser microscopy, a new technique used in an embryological study of Dactylorhiza maculata (Orchidaceae) , 1988 .

[114]  M. Osumi,et al.  Actin is associated with the formation of the cell wall in reverting protoplasts of the fission yeast Schizosaccharomyces pombe. , 1989, Journal of cell science.

[115]  C. Lloyd,et al.  The higher plant microtubule cycle , 1994 .

[116]  L. Vidali,et al.  Characterization and localization of profilin in pollen grains and tubes of Lilium longiflorum. , 1997, Cell motility and the cytoskeleton.

[117]  E. Schnepf,et al.  Endoplasmic reticulum and cytoplasmic streaming: Fluorescence microscopical observations in adaxial epidermis cells of onion bulb scales , 1986, Protoplasma.

[118]  F. Baluška,et al.  Rapid reorganization of microtubular cytoskeleton accompanies early changes in nuclear ploidy and chromatin structure in postmitotic cells of barley leaves infected with powdery mildew , 1995, Protoplasma.

[119]  A. Houtsmuller,et al.  The spatial localization of 18 S rRNA genes, in relation to the descent of the cells, in the root cortex of Petunia hybrida. , 1994, Journal of cell science.

[120]  D. Rawlins,et al.  Confocal microscopy and image processing in the study of plant nuclear structure , 1992 .

[121]  J. McNally,et al.  Covisualization by computation optical-sectioning microscopy of integrin and associated proteins at the cell membrane of living onion protoplasts , 2005, Protoplasma.

[122]  G. Hause,et al.  Expression of polarity during early development of microspore-derived and zygotic embryos of Brassica napus L. cv. Topas , 1994 .

[123]  V. Sarafis,et al.  Three-dimensional structure of living chloroplasts as visualized by confocal scanning laser microscopy , 1989, Protoplasma.

[124]  H. E. Keller,et al.  Objective Lenses for Confocal Microscopy , 2006 .

[125]  James B. Pawley,et al.  Fundamental Limits in Confocal Microscopy , 2006 .

[126]  P. Shaw,et al.  Monoclonal antibodies to plant nuclear matrix reveal intermediate filamentrelated components within the nucleus , 1991 .

[127]  A. Houtsmuller,et al.  Spatial arrangement of genes and chromosomes in plants comments on cell geneology and tissue specificity , 1992 .

[128]  Ian Parker,et al.  Video-rate confocal microscopy. , 2003, Methods in enzymology.

[129]  T. Rink Measurement of free calcium concentration in living cells , 1983 .

[130]  E. Schnepf,et al.  Mobile and immobile endoplasmic reticulum in onion bulb epidermis cells: short- and long-term observations with a confocal laser scanning microscope. , 1990, European journal of cell biology.

[131]  R. White,et al.  Actin associated with plasmodesmata , 1994, Protoplasma.

[132]  R. C. Brown,et al.  The cytokinetic apparatus in meiosis: control of division plane in the absence of a preprophase band of microtubules. , 1991 .

[133]  S. J. Wright,et al.  Introduction to confocal microscopy and three-dimensional reconstruction. , 1993, Methods in cell biology.

[134]  G. Cai,et al.  The kinesin-immunoreactive homologue from Nicotiana tabacum pollen tubes: Biochemical properties and subcellular localization , 1993, Planta.

[135]  D. Menzel An interconnected plastidom inAcetabularia: Implications for the mechanism of chloroplast motility , 1994, Protoplasma.

[136]  P. Hepler,et al.  Microinjection of fluorescent brain tubulin reveals dynamic properties of cortical microtubules in living plant cells , 1993 .

[137]  T. Suzaki,et al.  Effects of cycloheximide on preprophase bands and prophase spindles in onion (Allium cepa L.) root tip cells , 1996, Protoplasma.

[138]  Dario Cabib,et al.  Fourier transform multipixel spectroscopy for quantitative cytology , 1996 .

[139]  D. Williams,et al.  Confocal imaging of ionised calcium in living plant cells. , 1990, Cell calcium.

[140]  M. Opas Measurement of intracellular pH and pCa with a confocal microscope. , 1997, Trends in cell biology.

[141]  J. Carlson,et al.  Characterization of vascular lignification in Arabidopsis thaliana , 1992 .

[142]  Roger Y. Tsien,et al.  Fluorophores for Confocal Microscopy , 1995 .

[143]  J. Bohsung,et al.  Localization of calcium during somatic embryogenesis of carrot (Daucus carota L.) , 1996, Protoplasma.

[144]  D. Piston,et al.  Imaging of Cellular Dynamics by Two-Photon Excitation Microscopy , 1995, Microscopy and Microanalysis.

[145]  D. Baulcombe,et al.  Imaging the green fluorescent protein in plants — viruses carry the torch , 1995, Protoplasma.

[146]  S. Scordilis,et al.  Identification and localization of three classes of myosins in pollen tubes of Lilium longiflorum and Nicotiana alata. , 1995, Journal of cell science.

[147]  P. Hepler,et al.  Quantification of microtubule dynamics in living plant cells using fluorescence redistribution after photobleaching. , 1994, Journal of cell science.

[148]  W. Webb,et al.  Exchange of protein molecules through connections between higher plant plastids. , 1997, Science.

[149]  P. Hepler,et al.  Cryofixing single cells and multicellular specimens enhances structure and immunocytochemistry for light microscopy , 1996, Journal of microscopy.

[150]  R. Cyr,et al.  In situ immunocytochemical evidence that a homolog of protein translation elongation factor EF-1α is associated with microtubules in carrot cells , 2005, Protoplasma.

[151]  L Lucas,et al.  Visualization of volume data in confocal microscopy: comparison and improvements of volume rendering methods , 1996, Journal of microscopy.

[152]  D. B. Fisher,et al.  Real‐time imaging of phloem unloading in the root tip of Arabidopsis , 1994 .

[153]  V. Polito,et al.  Organization of the cytoskeleton in pollen tubes ofPyrus communis: a study employing conventional and freeze-substitution electron microscopy, immunofluorescence, and rhodamine-phalloidin , 1988, Protoplasma.

[154]  K. Takata,et al.  DNA Staining for Fluorescence and Laser Confocal Microscopy , 1997, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[155]  M. Michalak,et al.  Identification and localization of calreticulin in plant cells , 1996, Protoplasma.

[156]  David R. Soll,et al.  Confocal Microscopy of Living Cells , 2006 .

[157]  J. Slattery,et al.  Apoplastic pH in corn root gravitropism: a laser scanning confocal microscopy measurement. , 1996, Physiologia plantarum.

[158]  Carol J. Cogswell,et al.  Confocal Microscopy with Transmitted Light , 1995 .

[159]  M. Jacobsen,et al.  Image Restoration , 2000 .

[160]  R. C. Brown,et al.  Pollen development in orchids 4. Cytoskeleton and ultrastructure of the unequal pollen mitosis inPhalaenopsis , 1992, Protoplasma.

[161]  P. Shaw,et al.  Dynamic microtubules under the radial and outer tangential walls of microinjected pea epidermal cells observed by computer reconstruction. , 1995, The Plant journal : for cell and molecular biology.

[162]  B. Liu,et al.  Anaphase chromosome separation in dividing generative cells ofTradescantia , 1992, Protoplasma.

[163]  G. Hyde,et al.  Confocal microscopy of microtubule arrays in cryosectioned sporangia of , 1992 .

[164]  M. Steer,et al.  Pollen tube tip growth. , 1989, The New phytologist.

[165]  A. Trewavas,et al.  Growth of Pollen Tubes of Papaver rhoeas Is Regulated by a Slow-Moving Calcium Wave Propagated by Inositol 1,4,5-Trisphosphate. , 1996, The Plant cell.

[166]  P. Shaw,et al.  Comparison of Wide-Field/Deconvolution and Confocal Microscopy for 3D Imaging , 1995 .

[167]  K. Oparka,et al.  Symplastic communication between primary and developing lateral roots of Arabidopsis thaliana , 1995 .

[168]  P. Hepler,et al.  Visualization of the endoplasmic reticulum in living buds and branches of the moss Funaria hygrometrica by confocal laser scanning microscopy , 1990 .

[169]  M. Fricker,et al.  Modulation of K+ channels in Vicia stomatal guard cells by peptide homologs to the auxin-binding protein C terminus. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[170]  M. Cresti,et al.  The organization of the cytoskeleton in the generative cell and sperms ofHyacinthus orientalis , 1992, Protoplasma.

[171]  A. Forer,et al.  Rhodamine-labelled phalloidin stains components in the chromosomal spindle fibres of crane-fly spermatocytes and Haemanthus endosperm cells. , 1992, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[172]  C. Lloyd,et al.  Laser microsurgery demonstrates that cytoplasmic strands anchoring the nucleus across the vacuole of premitotic plant cells are under tension. Implications for division plane alignment , 1991 .

[173]  J. Marc,et al.  A γ‐tubulin that associates specifically with centrioles in HeLa cells and the basal body complex in Chlamydomonas , 1995, Cell biology international.

[174]  M. M. Vargas,et al.  The tubulin cytoskeleton and its sites of nucleation in hyphal tips ofAllomyces macrogynus , 1994, Protoplasma.

[175]  R. Funada,et al.  The Orientation and Localization of Cortical Microtubules in Differentiating Conifer Tracheids during Cell Expansion , 1997 .

[176]  Marcus J. Grote,et al.  The Collection, Processing, and Display of Digital Three-Dimensional Images of Biological Specimens , 1995 .

[177]  A. Lambert Microtubule-organizing centers in higher plants. , 1993, Current opinion in cell biology.

[178]  A. Adoutte,et al.  Incorporation of Paramecium axonemal tubulin into higher plant cells reveals functional sites of microtubule assembly. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[179]  M. Fordham,et al.  An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy , 1987, The Journal of cell biology.

[180]  D. Prasher,et al.  Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[181]  B. Satiat-Jeunemaitre,et al.  Brefeldin A effects in plant and fungal cells: something new about vesicle trafficking? , 1996, Journal of microscopy.

[182]  M. Kozubek,et al.  Efficient real-time confocal microscopy with white light sources , 1996, Nature.

[183]  P. C. Cheng,et al.  Multidimensional Microscopy , 1994, Springer New York.

[184]  C. Lloyd,et al.  THE PLANT CYTOSKELETON: The Impact of Fluorescence Microscopy , 1987 .

[185]  A Kusumi,et al.  Comparison of two‐photon excitation laser scanning microscopy with UV‐confocal laser scanning microscopy in three‐dimensional calcium imaging using the fluorescence indicator Indo‐1 , 1997, Journal of microscopy.

[186]  D. Flanders,et al.  Re-establishment of the interphase microtubule array in vacuolated plant cells, studied by confocal microscopy and 3-D imaging , 1990 .

[187]  Stefan W. Hell,et al.  A confocal beam scanning white‐light microscope , 1991 .

[188]  A. Schmit,et al.  The perinuclear microtubule-organizing center and the synaptonemal complex of higher plants share a common antigen: its putative transfer and role in meiotic chromosomal ordering , 1996, Chromosoma.

[189]  B. Athey,et al.  Real‐time two‐photon confocal microscopy using a femtosecond, amplified Ti:sapphire system , 1996, Journal of microscopy.

[190]  C. Sheppard,et al.  Effects of image deconvolution on optical sectioning in conventional and confocal microscopes , 1993 .

[191]  G. Wasteneys,et al.  Microtubule orientation and dynamics in elongating characean internodal cells following cytosolic acidification, induction of pH bands, or premature growth arrest , 1997, Protoplasma.

[192]  S. Gilroy,et al.  Gibberellic acid and abscisic acid coordinately regulate cytoplasmic calcium and secretory activity in barley aleurone protoplasts. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[193]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[194]  N. Allen,et al.  Dynamics of the endoplasmic reticulum in living onion epidermal cells in relation to microtubules, microfilaments, and intracellular particle movement , 1988 .

[195]  U. Tirlapur,et al.  Characterisation of isolated egg cells, in vitro fusion products and zygotes of Zea mays L. using the technique of image analysis and confocal laser scanning microscopy , 1995, Zygote.

[196]  Kjell Carlsson,et al.  The influence of specimen refractive index, detector signal integration, and non‐uniform scan speed on the imaging properties in confocal microscopy , 1991 .

[197]  D. Flanders,et al.  Nucleus-associated microtubules help determine the division plane of plant epidermal cells: avoidance of four-way junctions and the role of cell geometry , 1990, The Journal of cell biology.

[198]  R. Overall,et al.  Re-orientation of cortical F-actin is not necessary for wound-induced microtubule re-orientation and cell polarity establishment , 1992, Protoplasma.

[199]  P. Hepler,et al.  Microtubule dynamics in living dividing plant cells: confocal imaging of microinjected fluorescent brain tubulin. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[200]  G. Hyde,et al.  Microtubules regulate the generation of polarity in zoospores of Phytophthora cinnamomi. , 1993, European journal of cell biology.

[201]  Kiichi Fukui,et al.  Chromatin arrangements in intact interphase nuclei examined by laser confocal microscopy , 1995, Journal of Plant Research.

[202]  M. Minsky Memoir on inventing the confocal scanning microscope , 1988 .

[203]  P. Shaw,et al.  The organization of nucleolar activity in plants , 1996 .

[204]  A. Trewavas,et al.  The self‐incompatibility response in Papaver rhoeas is mediated by cytosolic free calcium , 1993 .

[205]  A. Stead,et al.  The formation of aplastidic abscission (tmema) cells and protonemal disruption in the mossBryum tenuisetum Limpr. is associated with transverse arrays of microtubules and microfilaments , 1993, Protoplasma.

[206]  D. Menzel,et al.  The perinuclear microtubule system in the green algaAcetabularia: anchor or motility device? , 1996, Protoplasma.

[207]  P. Shaw,et al.  Microinjected profilin affects cytoplasmic streaming in plant cells by rapidly depolymerizing actin microfilaments , 1994, Current Biology.

[208]  S. Grabski,et al.  Endoplasmic Reticulum Forms a Dynamic Continuum for Lipid Diffusion between Contiguous Soybean Root Cells. , 1993, The Plant cell.

[209]  Richard P. Haugland,et al.  Handbook of fluorescent probes and research chemicals , 1996 .

[210]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[211]  P. Hepler,et al.  PLANT MITOSIS PROMOTING FACTOR DISASSEMBLES THE MICROTUBULE PREPROPHASE BAND AND ACCELERATES PROPHASE PROGRESSION IN TRADESCANTIA , 1996, Cell biology international.

[212]  D. Callaham,et al.  Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic media. , 1994, The Plant cell.

[213]  E. Pierson,et al.  Microtubular organization during asymmetrical division of the generative cell inGagea lutea , 1995, Journal of plant research.

[214]  T. Lin,et al.  Image Restoration in Light Microscopy , 1994 .

[215]  T. Reese,et al.  The mechanism of cytoplasmic streaming in characean algal cells: sliding of endoplasmic reticulum along actin filaments , 1988, The Journal of cell biology.

[216]  Random mask brightens image , 1996, Nature.

[217]  A. Trewavas,et al.  Cytosolic free calcium mediates red light-induced photomorphogenesis , 1992, Nature.

[218]  A. Cleary F-actin redistributions at the division site in livingTradescantia stomatal complexes as revealed by microinjection of rhodamine-phalloidin , 1995, Protoplasma.

[219]  E. Blancaflor,et al.  Time course and auxin sensitivity of cortical microtubule reorientation in maize roots , 2005, Protoplasma.

[220]  A. Trewavas,et al.  Calcium Channel Activity during Pollen Tube Growth and Reorientation. , 1995, The Plant cell.

[221]  Bo Liu,et al.  Organization of cortical microfilaments in dividing root cells , 1992 .

[222]  M. Steer,et al.  Effects of fixatives and permeabilisation buffers on pollen tubes: implications for localisation of actin microfilaments using phalloidin staining , 1996, Protoplasma.

[223]  B. Matsumoto Cell biological applications of confocal microscopy , 1993 .

[224]  David R. Sandison,et al.  Quantitative Fluorescence Confocal Laser Scanning Microscopy (CLSM) , 1995 .

[225]  U. Mathesius,et al.  Rearrangements of F-actin during Stomatogenesis Visualised by Confocal Microscopy in Fixed and Permeabilised Tradescantia Leaf Epidermis , 1996 .

[226]  C. Lloyd,et al.  Simultaneous labelling of microtubules and fibrillar bundles in tobacco BY-2 cells by the anti-intermediate filament antibody, ME 101 , 1994, Protoplasma.

[227]  L. Oliveira,et al.  Organization of the cytoskeleton in the coenocytic algaVaucheria longicaulis var.macounii: an experimental study , 1994, Protoplasma.

[228]  C. Gehring,et al.  Phototropism and geotropism in maize coleoptiles are spatially correlated with increases in cytosolic free calcium , 1990, Nature.

[229]  T. Lin,et al.  Confocal Microscopy of Botanical Specimens , 1994 .

[230]  Robert H. Webb,et al.  The Pixilated Image , 1995 .

[231]  Yu-Li Wang,et al.  Analysis of cytoskeletal structures by the microinjection of fluorescent probes , 1990 .

[232]  A. Emons,et al.  Probing the Plant Actin Cytoskeleton during Cytokinesis and Interphase by Profilin Microinjection. , 1997, The Plant cell.

[233]  C. Wymer,et al.  Dynamic microtubules: implications for cell wall patterns , 1996 .

[234]  J. Bont,et al.  UPGRADING OF A BIORAD MRC-600 CONFOCAL LASER SCANNING MICROSCOPE WITH A 543-NM AND A 633-NM HENE LASER , 1996 .

[235]  Microtubules in pollen tube subprotoplasts: organization during protoplast formation and protoplast outgrowth , 1992, Protoplasma.

[236]  H. Quader,et al.  Influence of cytosolic pH changes on the organisation of the endoplasmic reticulum in epidermal cells of onion bulb scales: Acidification by loading with weak organic acids , 1990, Protoplasma.

[237]  C. H. Busby,et al.  Improvements in immunostaining samples embedded in methacrylate: localization of microtubules and other antigens throughout developing organs in plants of diverse taxa , 1992, Planta.

[238]  P. Wadsworth,et al.  MODULATION OF ANAPHASE SPINDLE MICROTUBULE STRUCTURE IN STAMEN HAIR-CELLS OF TRADESCANTIA BY CALCIUM AND RELATED AGENTS , 1992 .

[239]  R. Overall,et al.  Centrin homologues in higher plants are prominently associated with the developing cell plate , 2005, Protoplasma.

[240]  N. Nanninga,et al.  Cell shape, chromosome orientation and the position of the plane of division in Vicia faba root cortex cells , 1992 .

[241]  S. Inoué,et al.  Foundations of Confocal Scanned Imaging in Light Microscopy , 2006 .

[242]  P. Shaw,et al.  Confocal laser microscopy and three‐dimensional reconstruction of nucleus‐associated microtubules in the division plane of vacuolated plant cells , 1992 .

[243]  C. Gehring,et al.  Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[244]  J. Crawford,et al.  Behaviour of plasma membrane, cortical ER and plasmodesmata during plasmolysis of onion epidermal cells , 1994 .

[245]  Brian J. Bacskai,et al.  Video-Rate Confocal Microscopy , 1995 .

[246]  L. Walker,et al.  Microfilament distribution in protonemata of the mossCeratodon , 2005, Protoplasma.

[247]  P. M. Delaney,et al.  Fiberoptics in Confocal Microscopy , 1995 .

[248]  Nick White,et al.  Visualization Systems for Multidimensional CLSM Images , 1995 .

[249]  F. Gubler,et al.  A review of methods for the production and use of monoclonal antibodies to study zoosporic plant pathogens , 1991 .

[250]  J. Verbelen,et al.  In vivo determination of fibril orientation in plant cell walls with polarization CSLM , 1995 .