Two-dimensional plasmons in lateral carbon nanotube network structures and their effect on the terahertz radiation detection

We consider the carrier transport and plasmonic phenomena in the lateral carbon nanotube (CNT) networks forming the device channel with asymmetric electrodes. One electrode is the Ohmic contact to the CNT network and the other contact is the Schottky contact. These structures can serve as detectors of the terahertz (THz) radiation. We develop the device model for collective response of the lateral CNT networks which comprise a mixture of randomly oriented semiconductor CNTs (s-CNTs) and quasi-metal CNTs (m-CNTs). The proposed model includes the concept of the collective two-dimensional (2D) plasmons in relatively dense networks of randomly oriented CNTs (CNT “felt”) and predicts the detector responsivity spectral characteristics exhibiting sharp resonant peaks at the signal frequencies corresponding to the 2D plasmonic resonances. The detection mechanism is the rectification of the ac current due the nonlinearity of the Schottky contact current-voltage characteristics under the conditions of a strong enhancement of the potential drop at this contact associated with the plasmon excitation. The detector responsivity depends on the fractions of the s- and m-CNTs. The burning of the near-contact regions of the m-CNTs or destruction of these CNTs leads to a marked increase in the responsivity in agreement with our experimental data. The resonant THz detectors with sufficiently dense lateral CNT networks can compete and surpass other THz detectors using plasmonic effects at room temperatures.

[1]  T Mizutani,et al.  Relation between conduction property and work function of contact metal in carbon nanotube field-effect transistors , 2006, Nanotechnology.

[2]  Michael S. Shur,et al.  Plasma wave electronics: novel terahertz devices using two dimensional electron fluid , 1996 .

[3]  Harry E. Ruda,et al.  Polarization-sensitive optical phenomena in semiconducting and metallic nanowires , 2005 .

[4]  V. Ryzhii,et al.  Resonant Detection and Frequency Multiplication in Barrier-Injection Heterostructure Transistors , 2000 .

[5]  Erich Schlecht,et al.  Carbon nanotube Schottky diodes using Ti-Schottky and Pt-Ohmic contacts for high frequency applications. , 2005, Nano letters.

[6]  S. Rotkin,et al.  Energy relaxation of hot carriers in single-wall carbon nanotubes by surface optical phonons of the substrate , 2006 .

[7]  Michael S. Shur,et al.  Plasma wave detection of sub-terahertz and terahertz radiation by silicon field-effect transistors , 2004 .

[8]  G. Ya. Slepyan,et al.  Theory of multiwall carbon nanotubes as waveguides and antennas in the infrared and the visible regimes , 2008, 0806.2958.

[9]  P. Ajayan,et al.  Effect of ambient pressure on resistance and resistance fluctuations in single-wall carbon nanotube devices , 2006 .

[10]  Admittance of a slot diode with a two-dimensional electron channel , 2003 .

[11]  J. Lusakowski,et al.  Electron transport and detection of terahertz radiation in a GaN/AlGaN submicrometer field-effect transistor , 2007 .

[12]  R. Hauge,et al.  Carbon nanotube terahertz detector. , 2014, Nano letters.

[13]  Mitsuhiro Hanabe,et al.  Terahertz plasma wave resonance of two-dimensional electrons in InGaP/InGaAs/GaAs high-electron-mobility transistors , 2004 .

[14]  Michael S. Shur,et al.  Resonant detection of subterahertz radiation by plasma waves in a submicron field-effect transistor , 2002 .

[15]  M. Shur,et al.  One dimensional plasmons in pyroelectric-semiconductor composites , 2008 .

[16]  A. Shchepetov,et al.  Resonant and voltage-tunable terahertz detection in InGaAs /InP nanometer transistors , 2006 .

[17]  Jun Yan,et al.  Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. , 2014, Nature nanotechnology.

[18]  M. Shur,et al.  Electron transport and terahertz radiation detection in submicrometer-sized GaAs/AlGaAs field-effect transistors with two-dimensional electron gas , 2004 .

[19]  H. Bechtel,et al.  Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes , 2015, Nature Photonics.

[20]  Tetsuya Suemitsu,et al.  Current-driven detection of terahertz radiation using a dual-grating-gate plasmonic detector , 2014 .

[21]  Boris M. Voronov,et al.  Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation , 2015 .

[22]  D. Chklovskii,et al.  Electrostatics of edge channels. , 1992, Physical review. B, Condensed matter.

[23]  L. Varani,et al.  Voltage tuneable terahertz emission from a ballistic nanometer InGaAs∕InAlAs transistor , 2005 .

[24]  Boris Gelmont,et al.  Theory of junction between two-dimensional electron gas and p-type semiconductor , 1992 .

[25]  Michael S. Shur,et al.  Plasma wave resonant detection of femtosecond pulsed terahertz radiation by a nanometer field-effect transistor , 2005 .

[26]  M. Shur,et al.  Plasma and transit-time mechanisms of the terahertz radiation detection in high-electron-mobility transistors , 2003 .

[27]  Andrew G. Glen,et al.  APPL , 2001 .

[28]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[29]  Time-Domain Ab Initio Simulation of Energy Transfer in Double-Walled Carbon Nanotubes , 2015 .

[30]  Akhlesh Lakhtakia,et al.  Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas , 2006 .

[31]  K. Hata,et al.  Length-dependent plasmon resonance in single-walled carbon nanotubes. , 2014, ACS nano.

[32]  M. Shur,et al.  Plasma mechanisms of resonant terahertz detection in a two-dimensional electron channel with split gates , 2007, 0709.2462.

[33]  A. Satou,et al.  Ultrahigh sensitive sub-terahertz detection by InP-based asymmetric dual-grating-gate high-electron-mobility transistors and their broadband characteristics , 2014 .

[34]  W. Knap,et al.  Plasmonic terahertz detection by a double-grating-gate field-effect transistor structure with an asymmetric unit cell , 2011 .

[35]  V. Ryzhii,et al.  Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures , 2007 .

[36]  Qi Zhang,et al.  Carbon-based terahertz devices , 2015, Defense + Security Symposium.

[37]  Michael S. Shur,et al.  Double graphene-layer plasma resonances terahertz detector , 2012 .

[38]  Shur,et al.  Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current. , 1993, Physical review letters.

[39]  Chongwu Zhou,et al.  Comparative study of gel-based separated arcdischarge, HiPCO, and CoMoCAT carbon nanotubes for macroelectronic applications , 2013, Nano Research.

[40]  François Léonard,et al.  Electrical contacts to one- and two-dimensional nanomaterials. , 2011, Nature nanotechnology.

[41]  T. Ando,et al.  Optical Response of Finite-Length Carbon Nanotubes , 2009, 0909.1908.

[42]  Michael S. Shur,et al.  Resonant terahertz detection antenna utilizing plasma oscillations in lateral schottky diode , 2007 .

[43]  J. Kono,et al.  Plasmonic nature of the terahertz conductivity peak in single-wall carbon nanotubes. , 2013, Nano letters.

[44]  N. Dyakonova,et al.  Room temperature imaging at 1.63 and 2.54 THz with field effect transistor detectors , 2010 .

[45]  Wojciech Knap,et al.  Detection of terahertz radiation in gated two-dimensional structures governed by dc current , 2006 .

[46]  Mikhail I. Dyakonov,et al.  Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications , 2009, 0907.2523.

[47]  H J Li,et al.  Multichannel ballistic transport in multiwall carbon nanotubes. , 2005, Physical review letters.

[48]  F. Teppe,et al.  Room temperature tunable detection of subterahertz radiation by plasma waves in nanometer InGaAs transistors , 2006 .

[49]  R. Hauge,et al.  Collective antenna effects in the terahertz and infrared response of highly aligned carbon nanotube arrays , 2013, 1301.1478.

[50]  V. Ryzhii Resonant Detection and Mixing of Terahertz Radiation by Induced Base Hot Electron Transistors , 1998 .

[51]  M. Shur,et al.  Dynamic effects in double graphene-layer structures with inter-layer resonant-tunnelling negative conductivity , 2013, 1305.3966.

[52]  Junichiro Kono,et al.  Uncooled Carbon Nanotube Photodetectors , 2015 .

[53]  T. M. Klapwijk,et al.  Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation , 2013 .

[54]  S. Luryi Quantum capacitance devices , 1988 .

[55]  Plasma effects in lateral Schottky junction tunneling transit-time terahertz oscillator , 2006 .

[56]  M. Shur,et al.  InP Double Heterojunction Bipolar Transistor for broadband terahertz detection and imaging systems , 2015 .

[57]  A. Ferrari,et al.  High performance bilayer-graphene terahertz detectors , 2013, 1312.3737.

[58]  Michael S. Shur,et al.  Resonant Terahertz Detector Utilizing Plasma Oscillations in Two-Dimensional Electron System with Lateral Schottky Junction , 2006 .

[59]  M. Shur,et al.  Plasma oscillations in a slot diode structure with a two-dimensional electron channel , 2004 .

[60]  Michael S. Shur,et al.  Room-temperature plasma waves resonant detection of sub-terahertz radiation by nanometer field-effect transistor , 2005 .

[61]  C. Thomsen,et al.  Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment , 2010 .

[62]  D. Santavicca,et al.  Terahertz detection mechanism and contact capacitance of individual metallic single-walled carbon nanotubes , 2012, 1203.6290.

[63]  C. Thomsen,et al.  Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes , 2012 .

[64]  A. Ferrari,et al.  Graphene field-effect transistors as room-temperature terahertz detectors. , 2012, Nature materials.