Superconducting Digital Electronics for Controlling Quantum Computing Systems

The recent rapid increase in the scale of superconducting quantum computing systems greatly increases the demand for qubit control by digital circuits operating at qubit temperatures. In this paper, superconducting digital circuits, such as single-flux quantum and adiabatic quantum flux parametron circuits are described, that are promising candidates for this purpose. After estimating their energy consumption and speed, a conceptual overview of the superconducting electronics for controlling a multiple-qubit system is provided, as well as some of its component circuits. key words: qubit, quantum computing, single-flux quantum circuit, adiabatic quantum flux parametron circuit, superconducting integrated circuits

[1]  Naoki Takeuchi,et al.  Energy efficiency of adiabatic superconductor logic , 2014 .

[2]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[3]  Detlef Beckmann,et al.  Fluxon readout of a superconducting qubit. , 2013, Physical review letters.

[4]  S. Sarwana,et al.  Zero Static Power Dissipation Biasing of RSFQ Circuits , 2011, IEEE Transactions on Applied Superconductivity.

[5]  J. Mixter Fast , 2012 .

[6]  V. Semenov,et al.  SFQ control circuits for Josephson junction qubits , 2003 .

[7]  A. Vladimirescu,et al.  Cryo-CMOS for quantum computing , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[8]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[9]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[10]  M. Bocko,et al.  An RSFQ variable duty cycle oscillator for driving a superconductive qubit , 2003 .

[11]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[12]  Naoki Takeuchi,et al.  Simulation of sub-kBT bit-energy operation of adiabatic quantum-flux-parametron logic with low bit-error-rate , 2013 .

[13]  A. Fujimaki,et al.  Low-Energy Consumption RSFQ Circuits Driven by Low Voltages , 2013, IEEE Transactions on Applied Superconductivity.

[14]  Kazuyoshi Takagi,et al.  New Nb multi-layer fabrication process for large-scale SFQ circuits , 2009 .

[15]  V. Semenov,et al.  RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems , 1991, IEEE Transactions on Applied Superconductivity.

[16]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[17]  O. Naaman,et al.  Josephson junction microwave modulators for qubit control , 2016, 1610.07987.

[18]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[19]  O. A. Mukhanov,et al.  Experimental Investigation of Energy-Efficient Digital Circuits Based on eSFQ Logic , 2013, IEEE Transactions on Applied Superconductivity.

[21]  Naoki Takeuchi,et al.  An adiabatic quantum flux parametron as an ultra-low-power logic device , 2013 .

[22]  F K Wilhelm,et al.  Quantum superposition of macroscopic persistent-current states. , 2000, Science.

[23]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[24]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[25]  Alexander Opremcak,et al.  Digital Coherent Control of a Superconducting Qubit , 2018, Physical Review Applied.