A Proof Theory for Description Logics

Description Logics (DLs) is a family of formalisms used to represent knowledge of a domain. They are equipped with a formal logic-based semantics. Knowledge representation systems based on description logics provide various inference capabilities that deduce implicit knowledge from the explicitly represented knowledge. A Proof Theory for Description Logics introduces Sequent Calculi and Natural Deduction for some DLs (ALC, ALCQ). Cut-elimination and Normalization are proved for the calculi. The author argues that such systems can improve the extraction of computational content from DLs proofs for explanation purposes.

[1]  Bijan Parsia,et al.  Laconic and Precise Justifications in OWL , 2008, SEMWEB.

[2]  Dov M. Gabbay,et al.  Labelled Deductive Systems: Volume 1 , 1996 .

[3]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[4]  Alexandre Rademaker,et al.  Toward Short and Structural -Reasoning Explanations: A Sequent Calculus Approach , 2008, SBIA.

[5]  Clarisse Sieckenius de Souza,et al.  Structured argument generation in a logic-based KB-system , 1999 .

[6]  Guilin Qi,et al.  A Relevance-Directed Algorithm for Finding Justifications of DL Entailments , 2009, ASWC.

[7]  Klaus Schild,et al.  A Correspondence Theory for Terminological Logics: Preliminary Report , 1991, IJCAI.

[8]  Hector J. Levesque,et al.  Expressiveness and tractability in knowledge representation and reasoning 1 , 1987, Comput. Intell..

[9]  Mauro Ferrari,et al.  A Constructive Semantics for ALC , 2007, Description Logics.

[10]  Diego Calvanese,et al.  Reasoning on UML class diagrams , 2005, Artif. Intell..

[11]  Albrecht Schmiedel,et al.  BACK V5 - Tutorial & Manual , 1997 .

[12]  Volker Haarslev,et al.  RACER System Description , 2001, IJCAR.

[13]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[14]  Deborah L. McGuinness,et al.  Explaining Subsumption in Description Logics , 1995, IJCAI.

[15]  Ullrich Hustadt,et al.  Issues of Decidability for Description Logics in the Framework of Resolution , 1998, FTP.

[16]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[17]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[18]  Samuel R. Buss,et al.  Chapter I - An Introduction to Proof Theory , 1998 .

[19]  Christian Urban,et al.  Categorical proof theory of classical propositional calculus , 2006, Theor. Comput. Sci..

[20]  Bijan Parsia,et al.  Finding All Justifications of OWL DL Entailments , 2007, ISWC/ASWC.

[21]  Werner Nutt,et al.  The Complexity of Concept Languages , 1997, KR.

[22]  Michael Mendler,et al.  Towards Constructive DL for Abstraction and Refinement , 2009, Journal of Automated Reasoning.

[23]  Alexandre Rademaker,et al.  Is It Important to Explain a Theorem? A Case Study on UML and ALCQI\mathcal{ALCQI} , 2009, ER Workshops.

[24]  Valeria de Paiva Constructive Description Logics : what , why and how , 2006 .

[25]  Alberto Verdejo,et al.  Deduction, Strategies, and Rewriting , 2007, STRATEGIES@IJCAR.

[26]  Diego Calvanese,et al.  DL-Lite: Practical Reasoning for Rich Dls , 2004, Description Logics.

[27]  J. Girard,et al.  Proofs and types , 1989 .

[28]  Diego Calvanese,et al.  Information integration: conceptual modeling and reasoning support , 1998, Proceedings. 3rd IFCIS International Conference on Cooperative Information Systems (Cat. No.98EX122).

[29]  Gert Smolka,et al.  Attributive Concept Descriptions with Complements , 1991, Artif. Intell..

[30]  Ian Horrocks,et al.  Explaining ALC Subsumption , 2000, Description Logics.

[31]  Ronald J. Brachman,et al.  An overview of the KL-ONE Knowledge Representation System , 1985 .

[32]  Lew Gordeev,et al.  Proof compressions with circuit-structured substitutions , 2009 .

[33]  V. Haarslev,et al.  Using Patterns to Explain Inferences in , 2007, Comput. Intell..

[34]  Diego Calvanese,et al.  Description Logics for Conceptual Data Modeling , 1998, Logics for Databases and Information Systems.

[35]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[36]  Diego Calvanese,et al.  Conceptual Modeling for Data Integration , 2009, Conceptual Modeling: Foundations and Applications.

[37]  Ian Horrocks,et al.  FaCT++ Description Logic Reasoner: System Description , 2006, IJCAR.

[38]  José Meseguer,et al.  Conditioned Rewriting Logic as a United Model of Concurrency , 1992, Theor. Comput. Sci..

[39]  Helmut Schwichtenberg,et al.  Refined program extraction form classical proofs , 2002, Ann. Pure Appl. Log..

[40]  Valeria de Paiva,et al.  Intuitionistic Description Logic and Legal Reasoning , 2011, 2011 22nd International Workshop on Database and Expert Systems Applications.

[41]  Deborah L. McGuinness,et al.  Explaining reasoning in description logics , 1996 .

[42]  Jonathan P. Seldin,et al.  Normalization and excluded middle. I , 1989, Stud Logica.

[43]  Edward Hermann Haeusler,et al.  A natural deduction system for ctl , 2002 .

[44]  Hector J. Levesque,et al.  Krypton: A Functional Approach to Knowledge Representation , 1983, Computer.

[45]  Valeria C V de Paiva,et al.  Using Intuitionistic Logic as a Basis for Legal Ontologies , 2010 .

[46]  Ferhat Khendek,et al.  Testing of Communicating Systems, 17th IFIP TC6/WG 6.1 International Conference, TestCom 2005, Montreal, Canada, May 31 - June 2, 2005, Proceedings , 2005, TestCom.

[47]  R. Smullyan First-Order Logic , 1968 .

[48]  Dov M. Gabbay,et al.  Equal Rights for the Cut: Computable Non-analytic Cuts in Cut-based Proofs , 2007, Log. J. IGPL.

[49]  Yarden Katz,et al.  Pellet: A practical OWL-DL reasoner , 2007, J. Web Semant..

[50]  Carlos Bazílio,et al.  An Ontology-based Approach to the Formalization of Information Security Policies , 2006, 2006 10th IEEE International Enterprise Distributed Object Computing Conference Workshops (EDOCW'06).

[51]  Xi Deng,et al.  Using Patterns to Explain Inferences in , 2007, Comput. Intell..