TransLiG: a de novo transcriptome assembler that uses line graph iteration

We present TransLiG, a new de novo transcriptome assembler, which is able to integrate the sequence depth and pair-end information into the assembling procedure by phasing paths and iteratively constructing line graphs starting from splicing graphs. TransLiG is shown to be significantly superior to all the salient de novo assemblers in both accuracy and computing resources when tested on artificial and real RNA-seq data. TransLiG is freely available at https://sourceforge.net/projects/transcriptomeassembly/files/.

[1]  S. Stamm,et al.  Alternative splicing and disease. , 2009, Biochimica et biophysica acta.

[2]  B. Frey,et al.  Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing , 2008, Nature Genetics.

[3]  Ting Yu,et al.  BinPacker: Packing-Based De Novo Transcriptome Assembly from RNA-seq Data , 2016, PLoS Comput. Biol..

[4]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[5]  Eric T. Wang,et al.  Alternative Isoform Regulation in Human Tissue Transcriptomes , 2008, Nature.

[6]  Steven J. M. Jones,et al.  Abyss: a Parallel Assembler for Short Read Sequence Data Material Supplemental Open Access , 2022 .

[7]  Martin Vingron,et al.  Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels , 2012, Bioinform..

[8]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[9]  B. Wilhelm,et al.  RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. , 2009, Methods.

[10]  Claude E. Shannon,et al.  Prediction and Entropy of Printed English , 1951 .

[11]  Y. Xing,et al.  Detection of splice junctions from paired-end RNA-seq data by SpliceMap , 2010, Nucleic acids research.

[12]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[13]  Fatih Ozsolak,et al.  RNA sequencing: advances, challenges and opportunities , 2011, Nature Reviews Genetics.

[14]  T. Cooper,et al.  Pre-mRNA splicing in disease and therapeutics. , 2012, Trends in molecular medicine.

[15]  Zhong Wang,et al.  Next-generation transcriptome assembly , 2011, Nature Reviews Genetics.

[16]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[17]  Xun Xu,et al.  SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads , 2013, Bioinform..

[18]  S. Stamm,et al.  Function of alternative splicing. , 2013, Gene.

[19]  Xiuzhen Huang,et al.  Bridger: a new framework for de novo transcriptome assembly using RNA-seq data , 2015, Genome Biology.

[20]  Carl Kingsford,et al.  Accurate assembly of transcripts through phase-preserving graph decomposition , 2017, Nature Biotechnology.

[21]  Guojun Li,et al.  TransComb: genome-guided transcriptome assembly via combing junctions in splicing graphs , 2016, Genome Biology.

[22]  Siu-Ming Yiu,et al.  IDBA-tran: a more robust de novo de Bruijn graph assembler for transcriptomes with uneven expression levels , 2013, Bioinform..

[23]  J. Rinn,et al.  Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs , 2010, Nature biotechnology.

[24]  Derek Y. Chiang,et al.  MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery , 2010, Nucleic acids research.

[25]  J. Bähler,et al.  Cellular and Molecular Life Sciences REVIEW RNA-seq: from technology to biology , 2022 .

[26]  J. Rinn,et al.  Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs , 2010, Nature Biotechnology.

[27]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[28]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[29]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[30]  S. Stamm,et al.  Function of Alternative Splicing , 2004 .

[31]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[32]  R. Guigó,et al.  Modelling and simulating generic RNA-Seq experiments with the flux simulator , 2012, Nucleic acids research.

[33]  Serban Nacu,et al.  Fast and SNP-tolerant detection of complex variants and splicing in short reads , 2010, Bioinform..