Bandwidth-Efficient Modulation Formats for Digital Fiber Transmission Systems

Publisher Summary It is noted that early lightwave systems employed non–return–to–zero (NRZ) modulation. The newer long-haul systems use return–to–zero (RZ) and chirped RZ formats for obtaining better performance. The goal of system designers, essentially, is to increase spectral efficiency by reducing the RF spectrum required to transmit a given bitrate. Theoretical and implementation issues surrounding the application of modulation format other than unipolar NRZ and RZ to fiber-optic communication systems have been examined in the chapter. The modulation formats are illustrated with examples from the literature to elucidate the properties of signal formats in various single and multichannel optical transmission configurations. It is observed that multilevel modulation is capable of significant increases in spectral efficiency in radio systems where noise in signal and power–dependent channel nonlinearities are absent. However, in optical systems where noise in signal is the limiting noise source, multilevel intensity modulation does not have practical application in long-haul systems because of the excessive power required that induces much larger interchannel nonlinearity penalties than binary signaling formats.

[1]  M. Fukui,et al.  A 1580-nm band WDM transmission technology employing optical duobinary coding , 1999 .

[2]  T. Ono,et al.  Key technologies for terabit/second WDM systems with high spectral efficiency of over 1 bit/s/Hz , 1998 .

[3]  P. Henry Lightwave primer , 1985 .

[4]  H. Voelcker,et al.  Demodulation of Single-Sideband Signals Via Envelope Detection , 1966 .

[5]  J. Conradi,et al.  Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s systems , 2002, IEEE Photonics Technology Letters.

[6]  K. H. Powers The Compatibility Problem in Single-Sideband Transmission , 1960, Proceedings of the IRE.

[7]  A. Price,et al.  Reduced bandwidth optical digital intensity modulation with improved chromatic dispersion tolerance , 1995 .

[8]  K. Yonenaga,et al.  Dispersion compensation for homodyne detection systems using a 10-Gb/s optical PSK-VSB signal , 1995, IEEE Photonics Technology Letters.

[9]  G. H. Smith,et al.  TECHNIQUE FOR OPTICAL SSB GENERATION TO OVERCOME DISPERSION PENALTIES IN FIBRE-RADIO SYSTEMS , 1997 .

[10]  Adam Lender Correlative level coding for binary-data transmission , 1966, IEEE Spectrum.

[11]  G. Lockhart,et al.  A Spectral Theory for Hybrid Modulation , 1973, IEEE Trans. Commun..

[12]  Michel Nakhla Error probability for multilevel digital systems in presence of intersymbol interference and additive noise , 1994, IEEE Trans. Commun..

[13]  J. Conradi,et al.  Optical single sideband transmission at 10 Gb/s using only electrical dispersion compensation , 1999 .

[14]  L. C. Blank,et al.  10 Gbit/s unrepeatered three-level optical transmission over 100 km of standard fibre , 1993 .

[15]  David E. Dodds,et al.  Optical Single Sideband (OSSB) Transmission for Dispersion Avoidance and Electrical Dispersion Compensation in Microwave Subcarrier and Baseband Digital Systems , 1997 .

[16]  Peter Kabal,et al.  Partial-Response Signaling , 1975, IEEE Trans. Commun..

[17]  Kiyoshi Fukuchi,et al.  10 Gbit/s-120 km standard fiber transmission employing a novel optical phase-encoded intensity modulation for signal spectrum compression , 1997, Proceedings of Optical Fiber Communication Conference (.

[18]  Leonard R. Kahn Compatible Single Sideband , 1961, Proceedings of the IRE.

[19]  David E. Dodds,et al.  10 Gbit/s optical single sideband system , 1997 .

[20]  J. J. Veselka,et al.  Dispersion penalty reduction using an optical modulator with adjustable chirp , 1991 .

[21]  Richard E. Wagner,et al.  Chromatic dispersion limitations in coherent lightwave transmission systems , 1988 .

[22]  Dalma Novak,et al.  Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators , 1997 .

[23]  N. S. Bergano,et al.  Comparison of CRZ, RZ and NRZ modulation formats in a 64 /spl times/ 12.3 Gb/s WDM transmission experiment over 9000 km , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[24]  J. Conradi,et al.  Generation and transmission of FM and /spl pi//4 DQPSK signals at microwave frequencies using harmonic generation and optoelectronic mixing in Mach-Zehnder modulators , 1996 .

[25]  J. Conradi,et al.  Extended 10 Gb/s fiber transmission distance at 1538 nm using a duobinary receiver , 1994, IEEE Photonics Technology Letters.

[26]  Katsumi Emura,et al.  Characteristics of optical duobinary signals in terabit/s capacity, high-spectral efficiency WDM systems , 1998 .

[27]  J.C. Cartledge,et al.  Performance of 10 Gb/s lightwave systems using a adjustable chirp optical modulator and linear equalization , 1992, IEEE Photonics Technology Letters.

[28]  Donald K. Weaver,et al.  A Third Method of Generation and Detection of Single-Sideband Signals , 1956, Proceedings of the IRE.

[29]  B. W. Hakki Dispersion of microwave-modulated optical signals , 1993 .

[30]  A. Lender Correlative Digital Communication Techniques , 1964 .

[31]  J. Conradi,et al.  On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication systems , 1997, IEEE Photonics Technology Letters.

[32]  A. Gnauck,et al.  Dispersion compensation for optical fiber systems , 1995 .

[33]  Junji Namiki,et al.  Optical Fiber Feeder for Microcellular Mobile Communication Systems (H-015) , 1993, IEEE J. Sel. Areas Commun..

[34]  K. Yonenaga,et al.  A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems , 1993, IEEE Photonics Technology Letters.

[35]  J. Conradi,et al.  Hybrid modulator structures for subcarrier and harmonic subcarrier optical single sideband , 1998, IEEE Photonics Technology Letters.

[36]  Nori Shibata,et al.  A NOVEL OPTICAL DUOBINARY TRANSMISSION SYSTEM WITH NO RECEIVER SENSITIVITY DEGRADATION , 1995 .

[37]  M. Jones,et al.  4×40 Gbit/s RZ ETDM transmission over 520 km of NDSF at 120 and 160 km span lengths with Raman pre-amplification , 2000 .

[38]  K. Fukuchi,et al.  Demonstration of high-dispersion tolerance of 20-Gbit/s optical duobinary signal generated by a low-pass filtering method , 1997, Proceedings of Optical Fiber Communication Conference (.

[39]  F. Koyama,et al.  Frequency chirping in external modulators , 1988 .

[40]  W. Imajuku,et al.  Error-free operation of in-line phase-sensitive amplifier , 1998 .

[41]  J. Conradi,et al.  Hybrid harmonic subcarrier optical single sideband with phase predistortion , 1998 .

[42]  D. Novak,et al.  Broad-band millimeter-wave (38 GHz) fiber-wireless transmission system using electrical and optical SSB modulation to overcome dispersion effects , 1998, IEEE Photonics Technology Letters.

[43]  H. Toba,et al.  Duobinary carrier-suppressed return-to-zero format and its application to 100 GHz-spaced 8/spl times/43-Gbit/s DWDM unrepeatered transmission over 163 km , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[44]  H. Schmuck Comparison of optical millimetre-wave system concepts with regard to chromatic dispersion , 1995 .

[45]  S. D. Personick,et al.  Receiver design for optical fiber communication systems , 1980 .

[46]  Colin Edge,et al.  Single-Sideband Modulator In GaAs Integrated Optics for Microwave Frequency Operation , 1992 .

[47]  D.G. Moodie,et al.  40 Gbit/s modulator with low drive voltage and high optical output power , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).

[48]  A. Motamedi,et al.  Generation of fourth-harmonic microwave signals using Mach-Zehnder modulators , 1997, Proceedings of Optical Fiber Communication Conference (.

[49]  Michalis N. Zervas,et al.  Phase-encoded duobinary transmission over non-dispersion shifted fibre links using chirped grating dispersion compensators , 1997 .

[50]  L. Pierre,et al.  210 km repeaterless 10 Gb/s transmission experiment through nondispersion-shifted fiber using partial response scheme , 1995, IEEE Photonics Technology Letters.

[51]  W. Rosenkranz,et al.  Impact of self-phase modulation on bandwidth efficient modulation formats , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[52]  D. M. Spirit,et al.  10 Gbit/s, 138 km uncompensated duobinary transmission over installed standard fibre , 1994 .

[53]  P. M. Lane,et al.  Fibre-supported optical generation and delivery of 60 GHz signals , 1994 .

[54]  J. Conradi,et al.  Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems , 1999 .

[55]  E. Bedrosian A Product Theorem for Hilbert Transforms , 1963 .

[56]  S. Kuwano,et al.  10Gbit/s repeaterless transmission experiment of optical duobinary modulated signal , 1995 .

[57]  Manfred R. Schroeder,et al.  A solution to problem of compatible single-sideband transmission , 1962, IRE Trans. Inf. Theory.

[58]  D. Novak,et al.  37-GHz fiber-wireless system for distribution of broad-band signals , 1997 .

[59]  I. C. Smith,et al.  Efficient millimetre-wave signal generation through FM-IM conversion in dispersive optical fibre links , 1992 .

[60]  G. B. Lockhart,et al.  Envelope detection and correction of SSB , 1984 .

[61]  Katsumi Emura,et al.  Feasibility study on over 1 bit/s/Hz high spectral efficiency WDM with optical duobinary coding and polarization interleave multiplexing , 1997, Proceedings of Optical Fiber Communication Conference (.