Quadratic volume preserving maps

We study quadratic, volume preserving diffeomorphisms whose inverse is also quadratic. Such maps generalize the Henon area preserving map and the family of symplectic quadratic maps studied by Moser. In particular, we investigate a family of quadratic volume preserving maps in three space for which we find a normal form and study invariant sets. We also give an alternative proof of a theorem by Moser classifying quadratic symplectic maps.

[1]  Moody T. Chu,et al.  Inverse Eigenvalue Problems , 1998, SIAM Rev..

[2]  Y. Suris PARTITIONED RUNGE-KUTTA METHODS AS PHASE VOLUME PRESERVING INTEGRATORS , 1996 .

[3]  L. Shilnikov,et al.  Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits. , 1996, Chaos.

[4]  G.R.W. Wuispel,et al.  Volume-preserving integrators , 1995 .

[5]  Feng Kang,et al.  Volume-preserving algorithms for source-free dynamical systems , 1995 .

[6]  Walter Rudin,et al.  Injective Polynomial Maps Are Automorphisms , 1995 .

[7]  Robert S. MacKay,et al.  Transport in 3D volume-preserving flows , 1994 .

[8]  Jürgen Moser,et al.  On quadratic symplectic mappings , 1994 .

[9]  Leo P. Kadanoff,et al.  The break-up of a heteroclinic connection in a volume preserving mapping , 1993 .

[10]  Zhihong Xia Existence of invariant tori in volume-preserving diffeomorphisms , 1992, Ergodic Theory and Dynamical Systems.

[11]  Gregory S. Ezra,et al.  Transport and turnstiles in multidimensional Hamiltonian mappings for unimolecular fragmentation: Application to van der Waals predissociation , 1991 .

[12]  O. Piro,et al.  Passive scalars, three-dimensional volume-preserving maps, and chaos , 1988 .

[13]  A. Thyagaraja,et al.  Representation of volume‐preserving maps induced by solenoidal vector fields , 1985 .

[14]  Yi-sui Sun Invariant manifolds in the measure-preserving mappings with three-dimensions , 1984 .

[15]  H. Bass,et al.  The Jacobian conjecture: Reduction of degree and formal expansion of the inverse , 1982 .

[16]  J. Finn,et al.  Dynamics of a three-dimensional incompressible flow with stagnation points , 1982 .

[17]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[18]  M. Hénon Numerical study of quadratic area-preserving mappings , 1969 .

[19]  W. Engel Ganze Cremona-Transformationen von Primzahlgrad in der Ebene , 1958 .

[20]  P J Fox,et al.  THE FOUNDATIONS OF MECHANICS. , 1918, Science.

[21]  A. Dragt,et al.  Symplectic maps and computation of orbits in particle accelerators , 1996 .

[22]  A. Bazzani Normal form theory for volume preserving maps , 1993 .

[23]  Chong-Qing Cheng,et al.  Existence of invariant tori in three-dimensional measure-preserving mappings , 1989 .