Spark plasma sintering of a commercially available granulated zirconia powder—II. Microstructure after sintering and ionic conductivity

[1]  G. Bernard-Granger,et al.  Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification , 2007 .

[2]  S. Badwal,et al.  Analysis of the conductivity of commercial easy sintering grade 3 mol% Y2O3–ZrO2 materials , 2005 .

[3]  J. Gong,et al.  ac Impedance Study of Zirconia Doped with Yttria and Calcia , 2004 .

[4]  G. Spinolo,et al.  Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part II. Characterization studies , 2004 .

[5]  F. C. Fonseca,et al.  Impedance spectroscopy analysis of percolation in (yttria-stabilized zirconia)-yttria ceramic composites , 2004 .

[6]  J. Gong,et al.  Grain-boundary effect in zirconia stabilized with yttria and calcia by electrical measurements , 2003 .

[7]  M. Mecartney,et al.  Grain boundary ionic conductivity of yttrium stabilized zirconia as a function of silica content and grain size , 2003 .

[8]  Xin Guo,et al.  Grain size dependent grain boundary defect structure: case of doped zirconia , 2003 .

[9]  Xin Guo,et al.  Grain Boundary Blocking Effect in Zirconia: A Schottky Barrier Analysis , 2001 .

[10]  Y. Chiang,et al.  Solute Segregation and Grain‐Boundary Impedance in High‐Purity Stabilized Zirconia , 1996 .

[11]  W. C. Mackrodt,et al.  Theoretical Estimates of Point Defect Energies in Cubic Zirconia , 1986 .

[12]  W. Nix,et al.  Diffusional creep and diffusionally accommodated grain rearrangement , 1978 .

[13]  J. E. Bauerle Study of solid electrolyte polarization by a complex admittance method , 1969 .