Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers.

Hundreds of polymers have been evaluated as membrane materials for gas separations, but fewer than 10 have made it into current commercial applications, mainly due to the effects of physical aging and plasticization. Efforts to overcome these two problems are a significant focus in gas separation membrane research, in conjunction with improving membrane separation performance to surpass the Robeson upper bounds of selectivity versus permeability for commercially important gas pairs. While there has been extensive research, ranging from manipulating the chemistry of existing polymers (e.g., thermally rearranged or cross-linked polyimides) to synthesizing new polymers such as polymers of intrinsic microporosity (PIMs), there have been three major oversights that this review addresses: (1) the need to compare the approaches to achieving the best performance in order to identify their effectiveness in improving gas transport properties and in mitigating aging, (2) a common standardized aging protocol that allows rapid determination of the success (or not) of these approaches, and (3) standard techniques that can be used to characterize aging and plasticization across all studies to enable them to be robustly and equally compared. In this review, we also provide our perspectives on a few key aspects of research related to high free volume polymer membranes: (1) the importance of Robeson plots for membrane aging studies, (2) eliminating thermal history, (3) measurement and reporting of gas permeability and aging rate, (4) aging and storing conditions, and (5) promising approaches to mitigate aging.

[1]  Saad Makhseed,et al.  Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. , 2004, Chemical communications.

[2]  E. Drioli,et al.  Comparative Study of Different Probing Techniques for the Analysis of the Free Volume Distribution in Amorphous Glassy Perfluoropolymers , 2009 .

[3]  Zhongyi Jiang,et al.  Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity , 2016 .

[4]  P. Budd,et al.  Mixed Matrix Membranes based on UiO-66 MOFs in the Polymer of Intrinsic Microporosity PIM-1 , 2017 .

[5]  Tarō Itō,et al.  129Xe.n.m.r. study of adsorbed xenon: a new method for studying zeolites and metal-zeolites , 1988 .

[6]  H. Nakayama,et al.  Positron annihilation and 129Xe NMR studies of free volume in polymers , 2000 .

[7]  B. Freeman,et al.  Crosslinking poly(1-trimethylsilyl-1-propyne) and its effect on solvent resistance and transport properties , 2007 .

[8]  Young Moo Lee,et al.  Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions , 2007, Science.

[9]  I. Pinnau,et al.  Bifunctionalized Intrinsically Microporous Polyimides with Simultaneously Enhanced Gas Permeability and Selectivity. , 2016, Macromolecular rapid communications.

[10]  T. Merkel,et al.  Sorption and transport of hydrocarbon and perfluorocarbon gases in poly(1-trimethylsilyl-1-propyne) , 2000 .

[11]  I. Pinnau,et al.  Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations. , 2015, ACS macro letters.

[12]  Christopher R. Mason,et al.  Effect of physical aging on the gas transport and sorption in PIM-1 membranes , 2017 .

[13]  G. Robertson,et al.  Polymers of Intrinsic Microporosity with Dinaphthyl and Thianthrene Segments , 2010 .

[14]  I. Pinnau,et al.  Ultra‐Microporous Triptycene‐based Polyimide Membranes for High‐Performance Gas Separation , 2014, Advanced materials.

[15]  Matthias Heuchel,et al.  Molecular Modeling Investigation of Free Volume Distributions in Stiff Chain Polymers with Conventional and Ultrahigh Free Volume: Comparison between Molecular Modeling and Positron Lifetime Studies , 2003 .

[16]  G. Bengtson,et al.  Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM) , 2013 .

[17]  Haiqing Lin,et al.  Physical aging of glassy perfluoropolymers in thin film composite membranes. Part I. Gas transport properties , 2017 .

[18]  D. R. Stull,et al.  The chemical thermodynamics of organic compounds , 1969 .

[19]  P. Budd,et al.  Selective dye adsorption by chemically-modified and thermally-treated polymers of intrinsic microporosity. , 2017, Journal of colloid and interface science.

[20]  G. Robertson,et al.  Structural characterization and gas‐transport properties of brominated matrimid polyimide , 2002 .

[21]  Tai‐Shung Chung,et al.  The effect of shear rates on gas separation performance of 6FDA-durene polyimide hollow fibers , 2000 .

[22]  J. W. Barlow,et al.  Plasticization of glassy polymers by CO2 , 1985 .

[23]  A. Cheetham,et al.  Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes , 2014, Nature Communications.

[24]  I. Pinnau,et al.  Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1) , 2016 .

[25]  Ryan P. Lively,et al.  Defect-free PIM-1 hollow fiber membranes , 2017 .

[26]  D. R. Paul,et al.  Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical agingPart I. Experimental observations , 2000 .

[27]  F. Granozio Films , 1974, Études.

[28]  S. Dai,et al.  Advancing polymers of intrinsic microporosity by mechanochemistry , 2015 .

[29]  U. Suter,et al.  Detailed molecular structure of a vinyl polymer glass , 1985 .

[30]  Colin A. Scholes,et al.  Plasticization of ultra-thin polysulfone membranes by carbon dioxide , 2010 .

[31]  Norman R. Horn,et al.  Carbon dioxide plasticization of thin glassy polymer films , 2011 .

[32]  Yongjiang Huang,et al.  Physical aging of thin glassy polymer films monitored by gas permeability , 2004 .

[33]  G. Bengtson,et al.  Cross-linking of Polymer of Intrinsic Microporosity (PIM-1) via nitrene reaction and its effect on gas transport property , 2013 .

[34]  S. Kentish,et al.  Tailoring Physical Aging in Super Glassy Polymers with Functionalized Porous Aromatic Frameworks for CO2 Capture , 2015 .

[35]  Ahmad Fauzi Ismail,et al.  A review on the latest development of carbon membranes for gas separation , 2001 .

[36]  Polymers of Intrinsic Microporosity , 2009 .

[37]  M. A. Spielman The Structure of Troeger's Base , 1935 .

[38]  A. Ismail,et al.  Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane , 2002 .

[39]  J. G. Wijmans,et al.  The solution-diffusion model: a review , 1995 .

[40]  M. Ferrari,et al.  Highly Permeable Benzotriptycene-Based Polymer of Intrinsic Microporosity. , 2015, ACS macro letters.

[41]  J. C. Jansen,et al.  Molecular Modeling and Gas Permeation Properties of a Polymer of Intrinsic Microporosity Composed of Ethanoanthracene and Tröger’s Base Units , 2014 .

[42]  T. E. Reich,et al.  High CO2 uptake and selectivity by triptycene-derived benzimidazole-linked polymers. , 2012, Chemical communications.

[43]  P. Budd,et al.  Aging and Free Volume in a Polymer of Intrinsic Microporosity (PIM-1) , 2012 .

[44]  J. C. Jansen,et al.  Synthesis of cardo-polymers using Tröger's base formation , 2014 .

[45]  G. Robertson,et al.  Decarboxylation-Induced Cross-Linking of Polymers of Intrinsic Microporosity (PIMs) for Membrane Gas Separation† , 2012 .

[46]  A. Hill,et al.  Post-synthetic Ti Exchanged UiO-66 Metal-Organic Frameworks that Deliver Exceptional Gas Permeability in Mixed Matrix Membranes , 2015, Scientific Reports.

[47]  Stefan Kaskel,et al.  Intrinsically Microporous Poly(imide)s: Structure-Porosity Relationship Studied by Gas Sorption and X-ray Scattering , 2011 .

[48]  J. C. Jansen,et al.  An Efficient Polymer Molecular Sieve for Membrane Gas Separations , 2013, Science.

[49]  Gabriele Clarizia,et al.  Triptycene Induced Enhancement of Membrane Gas Selectivity for Microporous Tröger's Base Polymers , 2014, Advanced materials.

[50]  P. Budd,et al.  Polymers of Intrinsic Microporosity (PIMs): Organic Materials for Membrane Separations, Heterogeneous Catalysis and Hydrogen Storage , 2006 .

[51]  P. Pfromm,et al.  Accelerated physical ageing of thin glassy polymer films: evidence from gas transport measurements , 1995 .

[52]  Won Hee Lee,et al.  High-strength, soluble polyimide membranes incorporating Tröger’s Base for gas separation , 2016 .

[53]  D. Lozano‐Castelló,et al.  Usefulness of CO2 adsorption at 273 K for the characterization of porous carbons , 2004 .

[54]  Tom O. McDonald,et al.  Using intermolecular interactions to crosslink PIM-1 and modify its gas sorption properties , 2015 .

[55]  Y. Huang Physical aging of thin glassy polymer films , 2005 .

[56]  M. Ferrari,et al.  Polymer ultrapermeability from the inefficient packing of 2D chains. , 2017, Nature materials.

[57]  Naiying Du,et al.  Polymer nanosieve membranes for CO2-capture applications. , 2011, Nature materials.

[58]  Neil B. McKeown,et al.  Gas separation membranes from polymers of intrinsic microporosity , 2005 .

[59]  B. Freeman,et al.  Physical aging, CO2 sorption and plasticization in thin films of polymer with intrinsic microporosity (PIM-1) , 2017 .

[60]  Jiangtao Liu,et al.  Highly permeable and aging resistant 3D architecture from polymers of intrinsic microporosity incorporated with beta-cyclodextrin , 2017 .

[61]  Neil B. McKeown,et al.  Solution‐Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity , 2004 .

[62]  P. Budd,et al.  Physical aging of polymers of intrinsic microporosity: a SAXS/WAXS study , 2014 .

[63]  A. Cheetham,et al.  Nanofiller-tuned microporous polymer molecular sieves for energy and environmental processes , 2016 .

[64]  Qiang Xu Nanoporous Materials : Synthesis and Applications , 2013 .

[65]  A. Cheetham,et al.  Photo-oxidative enhancement of polymeric molecular sieve membranes , 2013, Nature Communications.

[66]  M. Guiver,et al.  Influence of Intermolecular Interactions on the Observable Porosity in Intrinsically Microporous Polymers , 2011 .

[67]  B. Freeman,et al.  Gas permeation in thin films of “high free-volume” glassy perfluoropolymers: Part I. Physical aging , 2014 .

[68]  I. Pinnau,et al.  Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides , 2015 .

[69]  L. Robeson,et al.  The upper bound revisited , 2008 .

[70]  P. Budd,et al.  Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation , 2013 .

[71]  Youchang Xiao,et al.  UV‐Rearranged PIM‐1 Polymeric Membranes for Advanced Hydrogen Purification and Production , 2012 .

[72]  P. Budd,et al.  PIM-1 mixed matrix membranes for gas separations using cost-effective hypercrosslinked nanoparticle fillers. , 2016, Chemical communications.

[73]  J. Tröger Ueber einige mittelst nascirenden Formaldehydes entstehende Basen , 1887 .

[74]  Wai Fen Yong,et al.  Suppression of aging and plasticization in highly permeable polymers , 2015 .

[75]  J. W. Barlow,et al.  Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical agingPart II. Mathematical model , 2000 .

[76]  P. Budd,et al.  Aging of polymers of intrinsic microporosity tracked by methanol vapour permeation , 2016 .

[77]  G. Robertson,et al.  Azide-based cross-linking of polymers of intrinsic microporosity (PIMs) for condensable gas separation. , 2011, Macromolecular rapid communications.

[78]  V. Shantarovich,et al.  Positron Annihilation Lifetime Study of High and Low Free Volume Glassy Polymers: Effects of Free Volume Sizes on the Permeability and Permselectivity , 2000 .

[79]  L. Olivieri,et al.  Effect of Graphene and Graphene Oxide Nanoplatelets on the Gas Permselectivity and Aging Behavior of Poly(trimethylsilyl propyne) (PTMSP) , 2015 .

[80]  H. Kita,et al.  Effect of photocrosslinking on permeability and permselectivity of gases through benzophenone- containing polyimide , 1994 .

[81]  Eric Litwiller,et al.  High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide , 2016 .

[82]  P. Budd,et al.  Free Volume Investigation of Polymers of Intrinsic Microporosity (PIMs): PIM-1 and PIM1 Copolymers Incorporating Ethanoanthracene Units , 2010 .

[83]  P. Budd,et al.  High‐Performance Membranes from Polyimides with Intrinsic Microporosity , 2008, Advanced materials.

[84]  L. Struik Physical aging in amorphous polymers and other materials , 1978 .

[85]  I. Pinnau,et al.  Energy‐Efficient Hydrogen Separation by AB‐Type Ladder‐Polymer Molecular Sieves , 2014, Advanced materials.

[86]  G. Golemme,et al.  129Xe-NMR study of free volume in amorphous perfluorinated polymers: comparsion with other methods , 2003 .

[87]  Wai Fen Yong,et al.  Blends of a Polymer of Intrinsic Microporosity and Partially Sulfonated Polyphenylenesulfone for Gas Separation. , 2016, ChemSusChem.

[88]  K. Harris,et al.  Triptycene-based polymers of intrinsic microporosity: organic materials that can be tailored for gas adsorption , 2010 .

[89]  P. Budd,et al.  Base-catalysed hydrolysis of PIM-1: amide versus carboxylate formation , 2014 .

[90]  P. Budd,et al.  Gas Permeation Parameters and Other Physicochemical Properties of a Polymer of Intrinsic Microporosity (PIM‐1) , 2010 .

[91]  P. Budd,et al.  The influence of few-layer graphene on the gas permeability of the high-free-volume polymer PIM-1 , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[92]  Hasmukh A. Patel,et al.  Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture. , 2012, Chemical communications.

[93]  H. Na,et al.  Preparation and properties of UV irradiation-induced crosslinked sulfonated poly(ether ether ketone) proton exchange membranes , 2009 .

[94]  J. C. Jansen,et al.  Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity , 2013 .

[95]  Donald R Paul,et al.  Solid-State Covalent Cross-Linking of Polyimide Membranes for Carbon Dioxide Plasticization Reduction , 2003 .

[96]  I. Pinnau,et al.  Pristine and thermally-rearranged gas separation membranes from novel o-hydroxyl-functionalized spirobifluorene-based polyimides , 2014 .

[97]  Eiji Isobe,et al.  Poly[1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability , 1983 .

[98]  G. S. Larsen,et al.  Structural Characterization of a Polymer of Intrinsic Microporosity: X-ray Scattering with Interpretation Enhanced by Molecular Dynamics Simulations , 2011 .

[99]  K. Skupov,et al.  Dimethyl sulfoxide as a green solvent for successful precipitative polyheterocyclization based on nucleophilic aromatic substitution, resulting in high molecular weight PIM-1 , 2016 .

[100]  N. McKeown The synthesis of polymers of intrinsic microporosity (PIMs) , 2017, Science China Chemistry.

[101]  Neil B. McKeown,et al.  Exploitation of Intrinsic Microporosity in Polymer-Based Materials , 2010 .

[102]  Dong Wang,et al.  Microporous Polyimides with Rationally Designed Chain Structure Achieving High Performance for Gas Separation , 2014 .

[103]  A. Bondi,et al.  Physical properties of molecular crystals liquids, and glasses , 1968 .

[104]  Ulrich W. Suter,et al.  Atomistic modeling of mechanical properties of polymeric glasses , 1986 .

[105]  G. Baker,et al.  Cross-linking of poly[1-(trimethylsilyl)-1-propyne] membranes using bis(aryl azides) , 1998 .

[106]  G. Bengtson,et al.  Functionalized carbon nanotubes mixed matrix membranes of polymers of intrinsic microporosity for gas separation , 2012, Nanoscale Research Letters.

[107]  Franz Faupel,et al.  Correlation of gas permeation and free volume in new and used high free volume thin film composite membranes , 2015 .

[108]  Y. Yampolskii,et al.  Thermodynamics of sorption in glassy poly(vinyltrimethylsilane) , 1986 .

[109]  Pei Li,et al.  Temperature dependence of gas sorption and permeation in PIM-1 , 2014 .

[110]  I. Pinnau,et al.  Novel Spirobifluorene- and Dibromospirobifluorene-Based Polyimides of Intrinsic Microporosity for Gas Separation Applications , 2013 .

[111]  I. Pinnau,et al.  Synthesis and Effect of Physical Aging on Gas Transport Properties of a Microporous Polyimide Derived from a Novel Spirobifluorene-Based Dianhydride. , 2015, ACS macro letters.

[112]  Kazukiyo Nagai,et al.  Effects of aging on the gas permeability and solubility in poly(1-trimethylsilyl-1-propyne) membranes synthesized with various catalysts , 1995 .

[113]  R. Baker Future directions of membrane gas separation technology , 2002 .

[114]  F. Li,et al.  Physical aging, high temperature and water vapor permeation studies of UV-rearranged PIM-1 membranes for advanced hydrogen purification and production , 2013 .

[115]  I. Pinnau,et al.  Pure- and mixed-gas permeation properties of a microporous spirobisindane-based ladder polymer (PIM-1) , 2009 .

[116]  S. J. Tao Positronium Annihilation in Molecular Substances , 1972 .

[117]  D. Cazorla-Amorós,et al.  Characterization of Activated Carbon Fibers by CO 2 Adsorption , 1996 .

[118]  I. Pinnau,et al.  Physical Aging, Plasticization and Their Effects on Gas Permeation in "Rigid" Polymers of Intrinsic Microporosity , 2015 .

[119]  M. Antonietti,et al.  Binaphthalene-Based, Soluble Polyimides: The Limits of Intrinsic Microporosity , 2009 .

[120]  M. Antonietti,et al.  Exploring Polymers of Intrinsic Microporosity – Microporous, Soluble Polyamide and Polyimide , 2007 .

[121]  J. Poston,et al.  Adsorption of CO2 on molecular sieves and activated carbon , 2001 .

[122]  Neil B. McKeown,et al.  Synthesis, Characterization, and Gas Permeation Properties of a Novel Group of Polymers with Intrinsic Microporosity: PIM-Polyimides , 2009 .

[123]  G. Robertson,et al.  Polymers of Intrinsic Microporosity Derived from Novel Disulfone-Based Monomers† , 2009 .

[124]  D. F. Kennedy,et al.  Gas-separation membranes loaded with porous aromatic frameworks that improve with age. , 2015, Angewandte Chemie.

[125]  D. Cazorla-Amorós,et al.  CO2 As an Adsorptive To Characterize Carbon Molecular Sieves and Activated Carbons , 1998 .

[126]  G. Kupgan,et al.  NLDFT Pore Size Distribution in Amorphous Microporous Materials. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[127]  Buyin Li,et al.  Synthesis of uniform microporous polymer nanoparticles and their applications for hydrogen storage , 2010 .

[128]  Yu Seong Do,et al.  Intrinsically Microporous Soluble Polyimides Incorporating Tröger’s Base for Membrane Gas Separation , 2014 .

[129]  C. Doherty,et al.  Hypercrosslinked Additives for Ageless Gas-Separation Membranes. , 2016, Angewandte Chemie.

[130]  N. Belov,et al.  Investigation of Polymers by Inverse Gas Chromatography , 2015 .

[131]  M. Carta,et al.  The synthesis of microporous polymers using Tröger's base formation , 2014 .

[132]  S. Kawi,et al.  High-Performance Thermally Self-Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) Membranes for Energy Development , 2012 .

[133]  W. Koros,et al.  Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part I. Transport properties , 2006 .

[134]  Wolf R. Vieth,et al.  Dual sorption theory , 1976 .

[135]  J. Cowie,et al.  Physical Aging in Poly(vinyl acetate). 2. Relative Rates of Volume and Enthalpy Relaxation , 1998 .

[136]  Tomoyuki Suzuki,et al.  Characterization of Microvoids in Glassy Polymers by Means of 129Xe NMR Spectroscopy , 2001 .

[137]  Jian Jin,et al.  Tröger's base-based copolymers with intrinsic microporosity for CO2 separation and effect of Tröger's base on separation performance , 2014 .

[138]  Jingshe Song,et al.  Linear High Molecular Weight Ladder Polymers by Optimized Polycondensation of Tetrahydroxytetramethylspirobisindane and 1,4-Dicyanotetrafluorobenzene† , 2008 .

[139]  I. Pinnau,et al.  Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1 , 2014 .

[140]  T. Merkel,et al.  Gas and Vapor Sorption, Permeation, and Diffusion in Glassy Amorphous Teflon AF1600 , 2002 .

[141]  Stefanie A. Sydlik,et al.  Triptycene Polyimides: Soluble Polymers with High Thermal Stability and Low Refractive Indices , 2011 .

[142]  Pei Li,et al.  Molecular engineering of PIM-1/Matrimid blend membranes for gas separation , 2012 .

[143]  D. Theodorou Principles of Molecular Simulation of Gas Transport in Polymers , 2006 .

[144]  I. Pinnau,et al.  Rational Design of Intrinsically Ultramicroporous Polyimides Containing Bridgehead-Substituted Triptycene for Highly Selective and Permeable Gas Separation Membranes , 2014 .

[145]  I. Pinnau,et al.  A novel intrinsically microporous ladder polymer and copolymers derived from 1,1′,2,2′-tetrahydroxy-tetraphenylethylene for membrane-based gas separation , 2016 .

[146]  B. Freeman,et al.  Physical aging of ultrathin glassy polymer films tracked by gas permeability , 2009 .

[147]  P. Bernardo,et al.  30 Years of Membrane Technology for Gas Separation , 2013 .

[148]  C. A. Smolders,et al.  Plasticization of gas separation membranes , 1991 .

[149]  Fu Yun Li,et al.  Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification , 2013 .

[150]  Yongjiang Huang,et al.  Physical aging of thin glassy polymer films monitored by optical properties , 2006 .

[151]  J. C. Jansen,et al.  A highly permeable polyimide with enhanced selectivity for membrane gas separations , 2014 .

[152]  D. Fritsch,et al.  Cyclic Ladder Polymers by Polycondensation of Silylated Tetrahydroxy‐tetramethylspirobisindane with 1,4‐Dicyanotetrafluorobenzene , 2005 .

[153]  P. Budd,et al.  Nanoporous Organic Polymer/Cage Composite Membranes , 2012, Angewandte Chemie.

[154]  Peter H. Pfromm,et al.  Accelerated Physical Aging of Thin Poly[1-(trimethylsilyl)-1-propyne] Films , 2000 .

[155]  G. Maier Gas separation by polymer membranes: beyond the border. , 2013, Angewandte Chemie.

[156]  D. R. Paul,et al.  Effect of UV crosslinking and physical aging on the gas permeability of thin glassy polyarylate films , 1999 .

[157]  J. C. Jansen,et al.  Gas Permeability of Hexaphenylbenzene Based Polymers of Intrinsic Microporosity , 2014 .

[158]  Aaron W Thornton,et al.  Ending aging in super glassy polymer membranes. , 2014, Angewandte Chemie.

[159]  Y. Yampolskii Methods for investigation of the free volume in polymers , 2007 .

[160]  D. Fritsch,et al.  Cyclic Ladder Polymers Based on 5,5`,6,6`-Tetrahydroxy-3,3,3`,3`-tetramethylspirobisindane and 2,3,5,6-Tetrafluoropyridines , 2006 .

[161]  Richard W. Baker,et al.  Gas Separation Membrane Materials: A Perspective , 2014 .

[162]  Tai‐Shung Chung,et al.  High performance PIM-1/Matrimid hollow fiber membranes for CO2/CH4, O2/N2 and CO2/N2 separation , 2013 .

[163]  I. Pinnau,et al.  Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor , 2013 .

[164]  Christopher R. Mason,et al.  Enhancement of CO2 Affinity in a Polymer of Intrinsic Microporosity by Amine Modification , 2014, Macromolecules.

[165]  V. Shantarovich,et al.  A Novel, Highly Gas-Permeable Polymer Representing a New Class of Silicon-Containing Polynorbornens As Efficient Membrane Materials , 2015 .

[166]  Jingshe Song,et al.  High-Performance Carboxylated Polymers of Intrinsic Microporosity (PIMs) with Tunable Gas Transport Properties† , 2009 .

[167]  Benny D. Freeman,et al.  Maximizing the right stuff: The trade-off between membrane permeability and selectivity , 2017, Science.

[168]  J. C. Jansen,et al.  A Spirobifluorene‐Based Polymer of Intrinsic Microporosity with Improved Performance for Gas Separation , 2012, Advanced materials.

[169]  Lin Hao,et al.  Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance , 2015 .

[170]  T. Jones Positron annihilation in , 1999 .

[171]  D. R. Paul,et al.  Effect of Temperature on Physical Aging of Thin Glassy Polymer Films , 2005 .

[172]  W. Koros,et al.  Responses of 6FDA-based polyimide thin membranes to CO2 exposure and physical aging as monitored by gas permeability , 2011 .

[173]  D. Fritsch,et al.  Cyclic and telechelic ladder polymers derived from tetrahydroxytetramethylspirobisindane and 1,4‐dicyanotetrafluorobenzene , 2006 .

[174]  I. Pinnau,et al.  High pressure pure- and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity , 2013 .

[175]  B. Freeman,et al.  Synthesis and Properties of Indan-Based Polyacetylenes That Feature the Highest Gas Permeability among All the Existing Polymers , 2008 .

[176]  Benny D. Freeman,et al.  Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes , 1999 .

[177]  D. R. Paul,et al.  Effect of CO2 exposure history on sorption and transport in polycarbonate , 1979 .

[178]  Á. Alegría,et al.  Physical aging in polymers and polymer nanocomposites: recent results and open questions , 2013 .

[179]  P. Izák,et al.  Selective removal of butanol from aqueous solution by pervaporation with a PIM-1 membrane and membrane aging , 2015 .

[180]  I. Pinnau,et al.  Synthesis and Gas Transport Properties of Hydroxyl-Functionalized Polyimides with Intrinsic Microporosity , 2012 .

[181]  Christopher R. Mason,et al.  Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8 , 2013 .

[182]  Ryan P. Lively,et al.  A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO2 recovery from flue gas , 2012 .

[183]  Alexander M. Spokoyny,et al.  Synthesis, Properties, and Gas Separation Studies of a Robust Diimide-Based Microporous Organic Polymer , 2009 .

[184]  Christopher R. Mason,et al.  Polymer of Intrinsic Microporosity Incorporating Thioamide Functionality: Preparation and Gas Transport Properties , 2011 .

[185]  B. Kariuki,et al.  Hexaphenylbenzene-based polymers of intrinsic microporosity. , 2011, Chemical communications.

[186]  H. Park,et al.  High performance polyimide with high internal free volume elements. , 2011, Macromolecular rapid communications.

[187]  J. C. Jansen,et al.  Enhancing the Gas Permeability of Tröger’s Base Derived Polyimides of Intrinsic Microporosity , 2016 .

[188]  D. Cazorla-Amorós,et al.  Further Advances in the Characterization of Microporous Carbons by Physical Adsorption of Gases (特集「炭素の表面と機能発現」) , 1998 .

[189]  R. Pethrick,et al.  Investigation of physical ageing in polymethylmethacrylate using positron annihilation, dielectric relaxation and dynamic mechanical thermal analysis , 1998 .

[190]  D. R. Paul,et al.  Experimental methods for tracking physical aging of thin glassy polymer films by gas permeation , 2004 .

[191]  L. Shao,et al.  Crosslinking and stabilization of nanoparticle filled PMP nanocomposite membranes for gas separations , 2009 .

[192]  Jingshe Song,et al.  Polymers of Intrinsic Microporosity Containing Trifluoromethyl and Phenylsulfone Groups as Materials for Membrane Gas Separation , 2008 .

[193]  J. Hutchinson,et al.  Physical aging of polymers , 1995 .

[194]  P. Budd,et al.  Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1) , 2008 .

[195]  Dong Wang,et al.  Tröger's Base-Based Microporous Polyimide Membranes for High-Performance Gas Separation. , 2014, ACS macro letters.

[196]  P. Budd,et al.  Highly permeable polymers for gas separation membranes , 2010 .

[197]  G. Robertson,et al.  Copolymers of Intrinsic Microporosity Based on 2,2',3,3'-Tetrahydroxy-1,1'-dinaphthyl. , 2009, Macromolecular rapid communications.

[198]  John N. Sherwood,et al.  The temperature dependence of positron lifetimes in solid pivalic acid , 1981 .

[199]  Arne Thomas,et al.  Micropore analysis of polymer networks by gas sorption and 129Xe NMR spectroscopy: toward a better understanding of intrinsic microporosity. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[200]  I. Pinnau,et al.  Role of Intrachain Rigidity in the Plasticization of Intrinsically Microporous Triptycene-Based Polyimide Membranes in Mixed-Gas CO2/CH4 Separations , 2014 .

[201]  P. Budd,et al.  Free volume and intrinsic microporosity in polymers , 2005 .

[202]  P. Budd,et al.  Polymers of Intrinsic Microporosity Derived from Bis(phenazyl) Monomers , 2008 .

[203]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[204]  A. Neimark,et al.  Unified Approach to Pore Size Characterization of Microporous Carbonaceous Materials from N2, Ar, and CO2 Adsorption Isotherms† , 2000 .

[205]  Naiying Du,et al.  Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity ( PIM-1 ) , 2012 .

[206]  A. Neimark,et al.  Molecular Level Models for CO2 Sorption in Nanopores , 1999 .

[207]  Yifu Ding,et al.  Physical aging of glassy perfluoropolymers in thin film composite membranes. Part II. Glass transition temperature and the free volume model , 2017 .

[208]  D. Hofmann,et al.  Detailed‐atomistic molecular modeling of small molecule diffusion and solution processes in polymeric membrane materials , 2000 .

[209]  I. Pinnau,et al.  Effects of hydroxyl-functionalization and sub-Tg thermal annealing on high pressure pure- and mixed-gas CO2/CH4 separation by polyimide membranes based on 6FDA and triptycene-containing dianhydrides , 2015 .

[210]  P. Budd,et al.  Thermally Rearrangeable PIM-Polyimides for Gas Separation Membranes , 2014 .

[211]  A. Drozdov The effect of temperature on physical aging of glassy polymers , 2001 .

[212]  M. Thommes Physical Adsorption Characterization of Nanoporous Materials , 2010 .

[213]  Lin Hao,et al.  PIM-1 as an organic filler to enhance the gas separation performance of Ultem polyetherimide , 2014 .

[214]  Donald R Paul,et al.  Physical aging of thin glassy polymer films: Free volume interpretation , 2006 .