Automatic Human Segmentation in Video Using Convex Active Contours

This paper presents a new algorithm for automatic detection and segmentation of humans in video. Our algorithm exploits the robustness and the accuracy of the interactive image segmentation using Convex Active Contours, to segment moving persons, but with an unsupervised manner. Based on a collaborative strategy to cluster a set of extracted Selective Space Time Interest Points, the resulting separated moving clusters are used to initialize automatically the seeds for the segmentation. Experiments show a good performance of our algorithm for human detection and segmentation in video without a user interaction.

[1]  Sergiu Nedevschi,et al.  Motion Estimation Using the Correlation Transform , 2013, IEEE Transactions on Image Processing.

[2]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[3]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[4]  Thomas B. Moeslund,et al.  Selective spatio-temporal interest points , 2012, Comput. Vis. Image Underst..

[5]  Neeti A. Ogale,et al.  A survey of techniques for human detection from video , 2006 .

[6]  Patrick Lambert,et al.  Video summarization from spatio-temporal features , 2008, TVS '08.

[7]  Xavier Bresson,et al.  Fast Global Minimization of the Active Contour/Snake Model , 2007, Journal of Mathematical Imaging and Vision.

[8]  Manoranjan Paul,et al.  Human detection in surveillance videos and its applications - a review , 2013, EURASIP J. Adv. Signal Process..

[9]  Xavier Bresson,et al.  Geometric Applications of the Split Bregman Method: Segmentation and Surface Reconstruction , 2010, J. Sci. Comput..

[10]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[11]  G. Celeux,et al.  A Classification EM algorithm for clustering and two stochastic versions , 1992 .

[12]  Germain Forestier Connaissances et clustering collaboratif d’objets complexes multisources , 2010 .

[13]  C.-C. Jay Kuo,et al.  Interactive Segmentation Techniques - Algorithms and Performance Evaluation , 2013, Springer Briefs in Electrical and Computer Engineering.

[14]  Jianfei Cai,et al.  Robust Interactive Image Segmentation Using Convex Active Contours , 2012, IEEE Transactions on Image Processing.

[15]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[16]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Larry S. Davis,et al.  Improved fast gauss transform and efficient kernel density estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[18]  Andrea Cavallaro,et al.  Video-Based Human Behavior Understanding: A Survey , 2013, IEEE Transactions on Circuits and Systems for Video Technology.

[19]  Hamid Tairi,et al.  Collaborative Xmeans-EM clustering for automatic detection and segmentation of moving objects in video , 2015, 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications (AICCSA).

[20]  Zoran Zivkovic,et al.  Improved adaptive Gaussian mixture model for background subtraction , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[21]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[22]  Guillermo Sapiro,et al.  A Geodesic Framework for Fast Interactive Image and Video Segmentation and Matting , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[23]  Fatih Murat Porikli,et al.  CDnet 2014: An Expanded Change Detection Benchmark Dataset , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[24]  Lionel Lacassagne,et al.  Motion detection: Fast and robust algorithms for embedded systems , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[25]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[26]  Alain Simac-Lejeune Moving Object Analysis in Video Sequences using Space-time Interest Points , 2012, VISAPP.