A direction-splitting Navier-Stokes solver on co-located grids

Abstract We introduce a new finite-difference solver for the incompressible Navier–Stokes equations that exploits the direction-splitting method proposed by Guermond and Minev in 2010, but is formulated on a co-located grid. The main ingredients of the new solver are: i) the direction-splitting approach adopted for both the momentum and the pressure equations; and ii) the co-located grid approach. The solver is parallelised by the Schur-complement method, and achieves very high performance levels on thousands of processors. Several test cases are proposed to assess the accuracy and efficiency of the method.

[1]  Roger Temam,et al.  Colocated finite volume schemes for fluid flows , 2008 .

[2]  S. Popinet Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries , 2003 .

[3]  M. Salvetti,et al.  Investigation of the steady engulfment regime in a three-dimensional T-mixer , 2013 .

[4]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[5]  Giuseppe Pascazio,et al.  A moving-least-squares immersed boundary method for simulating the fluid-structure interaction of elastic bodies with arbitrary thickness , 2016, J. Comput. Phys..

[6]  Hasan U. Akay,et al.  Parallel Schur complement method for large-scale systems on distributed memory computers , 2001 .

[7]  Massimiliano Fatica,et al.  AFiD-GPU: A versatile Navier-Stokes solver for wall-bounded turbulent flows on GPU clusters , 2017, Comput. Phys. Commun..

[8]  J. Koseff,et al.  A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates , 1994 .

[9]  S'ebastien Court,et al.  A fictitious domain finite element method for simulations of fluid-structure interactions: The Navier-Stokes equations coupled with a moving solid , 2015, 1502.03953.

[10]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 2014 .

[11]  S. Faure Stability of a colocated finite volume scheme for the Navier‐Stokes equations , 2005 .

[12]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[13]  Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element , 2015 .

[14]  Jean-Luc Guermond,et al.  A new class of fractional step techniques for the incompressible Navier–Stokes equations using direction splitting , 2010 .

[15]  Shashank,et al.  A co-located incompressible Navier-Stokes solver with exact mass, momentum and kinetic energy conservation in the inviscid limit , 2010, J. Comput. Phys..

[16]  W. Couzy,et al.  A fast Schur complement method for the spectral element discretization of the incompressible Navier-Stokes equations , 1995 .

[17]  Jean-Luc Guermond,et al.  International Journal for Numerical Methods in Fluids on Stability and Convergence of Projection Methods Based on Pressure Poisson Equation , 2022 .

[18]  Global wake instabilities of low aspect-ratio flat-plates , 2014, 1401.7190.

[19]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[20]  Jean-Christophe Loiseau,et al.  Time-Stepping and Krylov Methods for Large-Scale Instability Problems , 2018, Computational Methods in Applied Sciences.

[21]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[22]  P. Gresho Incompressible Fluid Dynamics: Some Fundamental Formulation Issues , 1991 .

[23]  Victor Eijkhout,et al.  Introduction to High Performance Scientific Computing , 2015 .

[24]  Paul Fischer,et al.  An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier-Stokes Equations , 1997 .

[25]  Pedro Costa,et al.  A FFT-based finite-difference solver for massively-parallel direct numerical simulations of turbulent flows , 2018, Comput. Math. Appl..

[26]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[27]  Stanley A. Berger,et al.  Fully developed pulsatile flow in a curved pipe , 1988, Journal of Fluid Mechanics.

[28]  U. Rist,et al.  Roughness-induced transition by quasi-resonance of a varicose global mode , 2017, Journal of Fluid Mechanics.

[29]  Gabriel Wittum,et al.  Towards the Implementation of a New Multigrid Solver in the DNS Code FS3D for Simulations of Shear-Thinning Jet Break-Up at Higher Reynolds Numbers , 2018 .

[30]  J. J. Douglas Alternating direction methods for three space variables , 1962 .

[31]  V. Theofilis Advances in global linear instability analysis of nonparallel and three-dimensional flows , 2003 .

[32]  Jie Shen,et al.  Velocity-Correction Projection Methods for Incompressible Flows , 2003, SIAM J. Numer. Anal..

[33]  L. Quartapelle,et al.  Numerical solution of the incompressible Navier-Stokes equations , 1993, International series of numerical mathematics.

[34]  Paolo Orlandi,et al.  Fluid Flow Phenomena: A Numerical Toolkit , 1999 .

[35]  P. Roache Code Verification by the Method of Manufactured Solutions , 2002 .

[36]  J. Pralits,et al.  A study of the mechanical forces on aphakic iris-fixated intraocular lenses. , 2018, Journal of biomechanical engineering.

[37]  Peter D. Minev,et al.  Start‐up flow in a three‐dimensional lid‐driven cavity by means of a massively parallel direction splitting algorithm , 2012 .

[38]  Elias Balaras,et al.  A moving-least-squares reconstruction for embedded-boundary formulations , 2009, J. Comput. Phys..

[39]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[40]  Gene H. Golub,et al.  Matrix computations , 1983 .

[41]  Hari Sundar,et al.  FFT, FMM, or Multigrid? A comparative Study of State-Of-the-Art Poisson Solvers for Uniform and Nonuniform Grids in the Unit Cube , 2014, SIAM J. Sci. Comput..

[42]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[43]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[44]  L. Tuckerman,et al.  Bifurcation Analysis for Timesteppers , 2000 .

[45]  Jean-Luc Guermond,et al.  A new class of massively parallel direction splitting for the incompressible Navier―Stokes equations , 2011 .

[46]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[47]  R. Verzicco,et al.  Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations , 2000 .

[48]  C. K. Filelis-Papadopoulos,et al.  Parallel Schur Complement Techniques Based on Multiprojection Methods , 2018, SIAM J. Sci. Comput..

[49]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[50]  C. Rhie,et al.  Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation , 1983 .

[51]  Parviz Moin,et al.  Direct simulations of turbulent flow using finite-difference schemes , 1991 .

[52]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[53]  M. Braza The 3D Transition to Turbulence in Wake Flows by Means of Direct Numerical Simulation , 2000 .

[54]  Spencer J. Sherwin,et al.  Destabilisation and modification of Tollmien–Schlichting disturbances by a three-dimensional surface indentation , 2017, Journal of Fluid Mechanics.

[55]  Jacob Cohen,et al.  Tracking stages of transition in Couette flow analytically , 2014, Journal of Fluid Mechanics.

[56]  Elias Balaras,et al.  Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve , 2009, Journal of Fluid Mechanics.

[57]  H. Kuhlmann,et al.  Accurate three-dimensional lid-driven cavity flow , 2005 .