Chapter 1.4 Measurement techniques of transport through membranes

Abstract Membrane model-independent relationships (e.g., phenomenological relationships of the thermodynamics of irreversible processes, Kedem—Katchalsky and Schlogl relationships, non-linear relationship of Kedem and Spiegler) and membrane model-dependent relationships (e.g., solution—diffusion model, fine porous membrane models such as combined viscous flow and frictional model, fixed charge and fine-porous membrane model) for transport of matter across synthetic membranes are compiled. Subsequently, the experimental determination of equilibrium properties such as membrane water content, fixed charge concentration and exchange isotherm, partition coefficients of solutes (absorption isotherm), and membrane swelling, is discussed since the equilibrium data are required for the evaluation of transport parameters from membrane model-dependent relationships. Finally, experimental methods for the determination of transport coefficients from dialysis—osmosis and hyperfiltration experiments are summarized placing emphasis on the determination and interpretation of membrane potential measurements. The characterization of hollow fibers and composite membrane systems by means of hyperfiltration experiments is also considered.

[1]  G. Mossa,et al.  Influence of pressure and/or pressure differential on membrane permeability , 1977 .

[2]  P. Jordan,et al.  Chemische Reaktionen hochenergetischer Tritium-Rückstoßatome mit flüssigem Cyclohexen , 1970 .

[3]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[4]  A. Mclaren,et al.  Sorption of water vapor by proteins and polymers: A review , 1951 .

[5]  K. Spiegler On the Electrochemistry of Ion‐Exchange Resins: A Review of Recent Work , 1953 .

[6]  W. Pusch,et al.  A model of physical adsorption of gases , 1979 .

[7]  K. S. Spiegler,et al.  Transport processes in ionic membranes , 1958 .

[8]  W. Pusch,et al.  Electric and electrokinetic transport properties of homogeneous weak ion exchange membranes , 1979 .

[9]  Thomas K. Sherwood,et al.  Salt Concentration at Phase Boundaries in Desalination by Reverse Osmosis , 1965 .

[10]  A. J. Allmand,et al.  CLXXXI.—Ionic equilibria across semi-permeable membranes , 1914 .

[11]  Robert L. Baldwin,et al.  Flow Equations and Frames of Reference for Isothermal Diffusion in Liquids , 1960 .

[12]  Wolfgang Pusch,et al.  Determination of Transport Parameters of Synthetic Membranes by Hyperfiltration Experiments Part II: Membrane Transport Parameters Independent of Pressure and/or Pressure Difference , 1977 .

[13]  W. Pusch,et al.  Determination of Transport Parameters of Synthetic Membranes by Hyperfiltration Experiments Part I: Derivation of Transport Relationship from the Linear Relations of Thermodynamics of Irreversible Processes , 1977 .

[14]  Charles E. Reid,et al.  Water and ion flow across cellulosic membranes , 1959 .

[15]  J. Ferry,et al.  Ultrafilter Membranes and Ultrafiltration. , 1936 .

[16]  L. Monnerie,et al.  Physicochemical processes occurring during the formation of cellulose diacetate membranes. Research of criteria for optimizing membrane performance. V. Cellulose diacetate–acetone–water–inorganic salt casting solutions , 1980 .

[17]  N. K. Raman,et al.  Solution and diffusion in silicone rubber I—A comparison with natural rubber , 1962 .

[18]  A. Katchalsky,et al.  Permeability of composite membranes. Part 2.—Parallel elements , 1963 .

[19]  A. Katchalsky,et al.  Permeability of composite membranes. Part 3.—Series array of elements , 1963 .

[20]  W. Pusch Transport coefficients of asymmetric cellulose acetate membranes , 1975 .

[21]  M. Heyde,et al.  Factors influencing reverse osmosis rejection of inorganic solutes from aqueous solution , 1975 .

[22]  G. Gouy Sur la fonction électrocapillaire , 1916 .

[23]  E. Heymann,et al.  The Acid Nature of Cellulose. II. The Strength of the Cellulosic Acid. , 1941 .

[24]  W. Pusch,et al.  Characterization of transport across cellulose acetate membranes in the presence of strong solute–membrane interactions , 1980 .

[25]  J. Crank,et al.  Some fundamental definitions and concepts in diffusion processes , 1949 .

[26]  A. J. Staverman,et al.  Friction and partition in membranes , 1975 .

[27]  F. Donnan,et al.  CLXXVII.—The osmotic pressure and conductivity of aqueous solutions of congo-red, and reversible membrane equilibria , 1911 .

[28]  R. M. Barrer,et al.  Permeation through a membrane with mixed boundary conditions , 1962 .

[29]  V. Stannett,et al.  On the salt rejection of non-ionic polymeric membranes , 1976 .

[30]  R. Schlögl Elektrodiffusion in freier Lösung und geladenen Membranen. , 1954 .

[31]  R. Schlögl Zur Theorie der anomalen Osmose. , 1955 .

[32]  J. Meixner,et al.  Thermodynamik der irreversiblen Prozesse , 1959 .

[33]  W. Pusch,et al.  Electrical and electroosmotic transport behavior of asymmetric cellulose acetate membranes. II. Transport behavior in hyperfiltration experiments , 1980 .

[34]  C. R. Peters,et al.  Factors influencing reverse osmosis rejection of organic solutes from aqueous solution , 1972 .

[35]  O. Kedem,et al.  Negative rejection of acids and separation of ions by hyperfiltration , 1968 .

[36]  F. G. Donnan,et al.  The Theory of Membrane Equilibria. , 1924 .

[37]  K. Meyer,et al.  La perméabilité des membranes VI. Sur le passage du courant électrique à travers des membranes sélectives , 1940 .

[38]  W. Pusch,et al.  Characterization of water structure in cellulose acetate membranes by calorimetric measurements , 1979 .

[39]  R. Dent A Multilayer Theory for Gas Sorption , 1977 .

[40]  M. Modell,et al.  Polyacrylic desalination membranes. I. Synthesis and characterization , 1969 .

[41]  E. Glueckauf A theoretical treatment of cation exchangers - I. The prediction of equilibrium constants from osmotic data , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  R. S. Silver,et al.  Fresh Water from the Sea , 1964 .

[43]  E. Heymann,et al.  The Acid Nature of Cellulose. I. Equilibria between Cellulose and Salts. , 1941 .

[44]  W. Pusch,et al.  Relation between salt rejection r and reflection coefficient σ of asymmetric cellulose acetate membranes , 1974 .

[45]  M. Heyde,et al.  Ion sorption by cellulose acetate membranes from binary salt solutions , 1975 .

[46]  A. Macgillivray,et al.  Applicability of Goldman's constant field assumption to biological systems. , 1969, Journal of theoretical biology.

[47]  A. Katchalsky,et al.  Permeability of composite membranes. Part 1.—Electric current, volume flow and flow of solute through membranes , 1963 .

[48]  L. Monnerie,et al.  Analysis of transport phenomena in cellulose diacetate membranes. II — Pressure effects on permeability characteristics in reverse osmosis , 1978 .

[49]  Sidney Loeb,et al.  Sea Water Demineralization by Means of an Osmotic Membrane , 1963 .

[50]  P. L. T. Brian,et al.  Concentration Polar zation in Reverse Osmosis Desalination with Variable Flux and Incomplete Salt Rejection , 1965 .

[51]  Gunnar Eigil Jonsson,et al.  Water and solute transport through cellulose acetate reverse osmosis membranes , 1975 .

[52]  K. S. Spiegler,et al.  Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes , 1966 .

[53]  Gregor,et al.  A GENERAL THERMODYNAMIC THEORY OF ION EXCHANGE PROCESSES. TECHNICAL REPORT ON ION EXCHANGE PROJECT , 1948 .

[54]  W. Pusch,et al.  Ion Exchange Capacity of Cellulose Acetate Membranes , 1976 .

[55]  H. Gregor Gibbs-Donnan Equilibria in Ion Exchange Resin Systems , 1951 .

[56]  R. L. Riley,et al.  Transport properties of cellulose acetate osmotic membranes , 1965 .

[57]  P. Meares The mechanism of water transport in membranes. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[58]  W. Pusch,et al.  Electrical and electroosmotic transport behavior of asymmetric cellulose acetate membranes. I. Transport behavior in dialysis-osmosis experiments , 1980 .

[59]  E. A. Mason,et al.  Statistical–mechanical theory of membrane transport for multicomponent systems: Passive transport through open membranes , 1978 .

[60]  J. Smit,et al.  Osmotic properties of a modified cellulose acetate membrane: The reflection coefficient and its dependence on the volume flow history , 1979 .

[61]  H. Pleijel Die Potentialdifferenz zwischen zwei elektrolytischen Lösungen , 1910 .

[62]  G. Schmid Zur Theorie der Elektroosmose , 1965 .

[63]  T. D. Hodgson Selective properties of cellulose acetate membranes towards ions in aqueous solutions , 1970 .

[64]  H. Yasuda,et al.  Diffusive and hydraulic permeabilities of water in water‐swollen polymer membranes , 1971 .

[65]  O. Kedem,et al.  Hyperfiltration in charged membranes: the fixed charge model , 1967 .

[66]  Donald R Paul,et al.  Pressure‐induced diffusion of organic liquids through highly swollen polymer membranes , 1970 .