Concurrent TMS-fMRI and Psychophysics Reveal Frontal Influences on Human Retinotopic Visual Cortex

[1]  Anna C Nobre,et al.  FEF TMS affects visual cortical activity. , 2006, Cerebral cortex.

[2]  Juha Silvanto,et al.  Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. , 2006, Journal of neurophysiology.

[3]  S. Yantis,et al.  Selective visual attention and perceptual coherence , 2006, Trends in Cognitive Sciences.

[4]  Katsuyuki Sakai,et al.  Prefrontal Set Activity Predicts Rule-Specific Neural Processing during Subsequent Cognitive Performance , 2006, The Journal of Neuroscience.

[5]  Martin I. Sereno,et al.  Spatial maps in frontal and prefrontal cortex , 2006, NeuroImage.

[6]  Mark D'Esposito,et al.  Searching for “the Top” in Top-Down Control , 2005, Neuron.

[7]  Bradley R. Postle,et al.  Delay-period Activity in the Prefrontal Cortex: One Function Is Sensory Gating , 2005, Journal of Cognitive Neuroscience.

[8]  W. Singer,et al.  Hemodynamic Signals Correlate Tightly with Synchronized Gamma Oscillations , 2005, Science.

[9]  M. Gazzaniga Forty-five years of split-brain research and still going strong , 2005, Nature Reviews Neuroscience.

[10]  R. Dolan,et al.  Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field. , 2005, Cerebral cortex.

[11]  T. Paus,et al.  Cortical regions involved in eye movements, shifts of attention, and gaze perception , 2005, Human brain mapping.

[12]  G. Rees,et al.  Saccades Differentially Modulate Human LGN and V1 Responses in the Presence and Absence of Visual Stimulation , 2005, Current Biology.

[13]  M. Lauritzen Reading vascular changes in brain imaging: is dendritic calcium the key? , 2005, Nature Reviews Neuroscience.

[14]  Neil G. Muggleton,et al.  Timing of Target Discrimination in Human Frontal Eye Fields , 2004, Journal of Cognitive Neuroscience.

[15]  D. Long,et al.  Transcranial Magnetic Stimulation: A Neurochronometrics of Mind , 2004 .

[16]  J. Rothwell,et al.  Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits , 2004, The European journal of neuroscience.

[17]  M. Carrasco,et al.  Attention alters appearance , 2004, Nature Neuroscience.

[18]  Paul Schrater,et al.  BOLD fMRI and psychophysical measurements of contrast response to broadband images , 2004, Vision Research.

[19]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[20]  M. Georgeson,et al.  Transcranial magnetic stimulation to right parietal cortex modifies the attentional blink , 2004, Experimental Brain Research.

[21]  Tomás Paus,et al.  Transcranial Magnetic Stimulation of the Human Frontal Eye ®eld Facilitates Visual Awareness , 2022 .

[22]  Katherine M. Armstrong,et al.  Visuomotor Origins of Covert Spatial Attention , 2003, Neuron.

[23]  Chi-Hung Juan,et al.  Human frontal eye fields and visual search. , 2003, Journal of neurophysiology.

[24]  David J. Heeger,et al.  Neuronal correlates of perception in early visual cortex , 2003, Nature Neuroscience.

[25]  S. Bestmann,et al.  On the synchronization of transcranial magnetic stimulation and functional echo‐planar imaging , 2003, Journal of magnetic resonance imaging : JMRI.

[26]  Katherine M. Armstrong,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2003, Nature.

[27]  J. Driver,et al.  Preparatory states in crossmodal spatial attention: spatial specificity and possible control mechanisms , 2003, Experimental Brain Research.

[28]  D. Attwell,et al.  The neural basis of functional brain imaging signals , 2002, Trends in Neurosciences.

[29]  T. Paus,et al.  Transcranial Magnetic Stimulation of the Human Frontal Eye Field: Effects on Visual Perception and Attention , 2002, Journal of Cognitive Neuroscience.

[30]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[31]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[32]  J. Rothwell,et al.  Functional Connectivity of Human Premotor and Motor Cortex Explored with Repetitive Transcranial Magnetic Stimulation , 2002, The Journal of Neuroscience.

[33]  S. Bestmann,et al.  Functional MRI of cortical activations induced by transcranial magnetic stimulation (TMS) , 2001, Neuroreport.

[34]  Peter A. Bandettini,et al.  From neuron to BOLD: new connections , 2001, Nature Neuroscience.

[35]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[36]  Karl J. Friston,et al.  Modelling Geometric Deformations in Epi Time Series , 2022 .

[37]  J. Driver,et al.  Control of Cognitive Processes: Attention and Performance XVIII , 2000 .

[38]  D. Heeger,et al.  Activity in primary visual cortex predicts performance in a visual detection task , 2000, Nature Neuroscience.

[39]  B. Wandell,et al.  Visualization and Measurement of the Cortical Surface , 2000, Journal of Cognitive Neuroscience.

[40]  O. Blanke,et al.  Location of the human frontal eye field as defined by electrical cortical stimulation: anatomical, functional and electrophysiological characteristics , 2000, Neuroreport.

[41]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[42]  R. Wurtz,et al.  Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. , 2000, Journal of neurophysiology.

[43]  E. J. Tehovnik,et al.  Eye fields in the frontal lobes of primates , 2000, Brain Research Reviews.

[44]  R. Knight,et al.  Prefrontal modulation of visual processing in humans , 2000, Nature Neuroscience.

[45]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[46]  E. Kathryn Miller,et al.  The neural basis of topdown control of visual attention in the prefrontal cortex , 2000 .

[47]  M. Young,et al.  Neuronal population activity and functional imaging , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[48]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[49]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[50]  D. Heeger,et al.  Spatial attention affects brain activity in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[51]  D. Somers,et al.  Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Ziad Nahas,et al.  A combined TMS/fMRI study of intensity-dependent TMS over motor cortex , 1999, Biological Psychiatry.

[53]  D. Bohning,et al.  Performance of a system for interleaving transcranial magnetic stimulation with steady-state magnetic resonance imaging. , 1999, Electroencephalography and clinical neurophysiology. Supplement.

[54]  D. Heeger,et al.  Neuronal basis of contrast discrimination , 1999, Vision Research.

[55]  R. Rafal,et al.  Localization of the human frontal eye fields and motor hand area with transcranial magnetic stimulation and magnetic resonance imaging , 1998, Neuropsychologia.

[56]  Leslie G. Ungerleider,et al.  Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. , 1998, Science.

[57]  J Schlag,et al.  Interaction of the two frontal eye fields before saccade onset. , 1998, Journal of neurophysiology.

[58]  Guillermo Sapiro,et al.  Creating connected representations of cortical gray matter for functional MRI visualization , 1997, IEEE Transactions on Medical Imaging.

[59]  Ichiro Kanazawa,et al.  Shortening of simple reaction time by peripheral electrical and submotor-threshold magnetic cortical stimulation , 1997, Experimental Brain Research.

[60]  Alan C. Evans,et al.  Transcranial Magnetic Stimulation during Positron Emission Tomography: A New Method for Studying Connectivity of the Human Cerebral Cortex , 1997, The Journal of Neuroscience.

[61]  J. Duncan,et al.  Competitive brain activity in visual attention , 1997, Current Opinion in Neurobiology.

[62]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  C. Bruce,et al.  Topography of projections to posterior cortical areas from the macaque frontal eye fields , 1995, The Journal of comparative neurology.

[64]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[65]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[66]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[67]  Richard A. Tyrrell,et al.  A rapid technique to assess the resting states of the eyes and other threshold phenomena: The Modified Binary Search (MOBS) , 1988 .