Glia-derived neurons are required for sex-specific learning in C. elegans

Sex differences in behaviour extend to cognitive-like processes such as learning, but the underlying dimorphisms in neural circuit development and organization that generate these behavioural differences are largely unknown. Here we define at the single-cell level—from development, through neural circuit connectivity, to function—the neural basis of a sex-specific learning in the nematode Caenorhabditis elegans. We show that sexual conditioning, a form of associative learning, requires a pair of male-specific interneurons whose progenitors are fully differentiated glia. These neurons are generated during sexual maturation and incorporated into pre-exisiting sex-shared circuits to couple chemotactic responses to reproductive priorities. Our findings reveal a general role for glia as neural progenitors across metazoan taxa and demonstrate that the addition of sex-specific neuron types to brain circuits during sexual maturation is an important mechanism for the generation of sexually dimorphic plasticity in learning.

[1]  Daisuke Yamamoto,et al.  Fruitless specifies sexually dimorphic neural circuitry in the Drosophila brain , 2005, Nature.

[2]  Liliane Schoofs,et al.  Vasopressin/Oxytocin-Related Signaling Regulates Gustatory Associative Learning in C. elegans , 2012, Science.

[3]  Douglas S. Portman,et al.  Sex, Age, and Hunger Regulate Behavioral Prioritization through Dynamic Modulation of Chemoreceptor Expression , 2014, Current Biology.

[4]  Travis A. Jarrell,et al.  The Connectome of a Decision-Making Neural Network , 2012, Science.

[5]  F. Doetsch,et al.  The glial identity of neural stem cells , 2003, Nature Neuroscience.

[6]  R. Margueron,et al.  Sequential histone-modifying activities determine the robustness of transdifferentiation , 2014, Science.

[7]  Naoko Sakai,et al.  A Sexually Conditioned Switch of Chemosensory Behavior in C. elegans , 2013, PloS one.

[8]  Douglas S. Portman,et al.  Distributed Effects of Biological Sex Define Sex-Typical Motor Behavior in Caenorhabditis elegans , 2014, The Journal of Neuroscience.

[9]  Jai Y. Yu,et al.  Dopamine neurons modulate pheromone responses in Drosophila courtship learning , 2012, Nature.

[10]  Zeynep F. Altun,et al.  High resolution map of Caenorhabditis elegans gap junction proteins , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[11]  M. Götz,et al.  Fate specification in the adult brain--lessons for eliciting neurogenesis from glial cells. , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[12]  R. Day,et al.  IDA‐1, a Caenorhabditis elegans homolog of the diabetic autoantigens IA‐2 and phogrin, is expressed in peptidergic neurons in the worm , 2001, The Journal of comparative neurology.

[13]  A. Arnold,et al.  Sexual dimorphism in vocal control areas of the songbird brain. , 1976, Science.

[14]  Cori Bargmann,et al.  Laser killing of cells in Caenorhabditis elegans. , 1995, Methods in cell biology.

[15]  Paul W. Sternberg,et al.  A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans , 1999, Nature.

[16]  M. Nitabach,et al.  Discovery and characterization of a conserved pigment dispersing factor‐like neuropeptide pathway in Caenorhabditis elegans , 2009, Journal of neurochemistry.

[17]  A. Brand,et al.  Insights into neural stem cell biology from flies , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[18]  Oliver Hobert,et al.  Regulatory Logic of Pan-Neuronal Gene Expression in C. elegans , 2015, Neuron.

[19]  Kyuhyung Kim,et al.  Expression and regulation of an FMRFamide‐related neuropeptide gene family in Caenorhabditis elegans , 2004, The Journal of comparative neurology.

[20]  D. Hall,et al.  Modern electron microscopy methods for C. elegans. , 2012, Methods in cell biology.

[21]  L. Bell,et al.  The Molecular Identities of the Caenorhabditis elegans Intraflagellar Transport Genes dyf-6, daf-10 and osm-1 , 2006, Genetics.

[22]  T. Okada,et al.  Transdifferentiation : flexibility in cell differentiation , 1991 .

[23]  N. Shah,et al.  Sexually Dimorphic Neurons in the Ventromedial Hypothalamus Govern Mating in Both Sexes and Aggression in Males , 2013, Cell.

[24]  Yun Lu,et al.  Sensory Organ Remodeling in Caenorhabditis elegans Requires the Zinc-Finger Protein ZTF-16 , 2012, Genetics.

[25]  Douglas S. Portman,et al.  Neural Sex Modifies the Function of a C. elegans Sensory Circuit , 2007, Current Biology.

[26]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[27]  J. Sulston,et al.  The Caenorhabditis elegans male: postembryonic development of nongonadal structures. , 1980, Developmental biology.

[28]  Mark J Alkema,et al.  Tyramine Functions Independently of Octopamine in the Caenorhabditis elegans Nervous System , 2005, Neuron.

[29]  Erik M. Jorgensen,et al.  The Sensory Circuitry for Sexual Attraction in C. elegans Males , 2007, Current Biology.

[30]  A. Kriegstein,et al.  Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases , 2004, Nature Neuroscience.

[31]  O. Hobert,et al.  A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans. , 2001, Development.

[32]  S. Ward,et al.  Electron microscopical reconstruction of the anterior sensory anatomy of the nematode caenorhabditis elegans , 1975, The Journal of comparative neurology.

[33]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[34]  T. Vellai,et al.  Effects of Sex and Insulin/Insulin-Like Growth Factor-1 Signaling on Performance in an Associative Learning Paradigm in Caenorhabditis elegans , 2006, Genetics.

[35]  O. Hobert,et al.  The neurexin superfamily of Caenorhabditis elegans. , 2011, Gene expression patterns : GEP.

[36]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[37]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[38]  Yi Wang,et al.  Computer Assisted Assembly of Connectomes from Electron Micrographs: Application to Caenorhabditis elegans , 2013, PloS one.

[39]  M. Levine,et al.  Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene , 2011, Nature Neuroscience.

[40]  A. Barrios,et al.  Exploratory decisions of the Caenorhabditis elegans male: a conflict of two drives. , 2014, Seminars in cell & developmental biology.

[41]  DH Hall,et al.  The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  Wouter Houthoofd,et al.  The embryonic cell lineage of the nematode Halicephalobus gingivalis (Nematoda: Cephalobina: Panagrolaimoidea) , 2007 .

[43]  Oliver Hobert,et al.  Direct Conversion of C. elegans Germ Cells into Specific Neuron Types , 2011, Science.

[44]  Paul W. Sternberg,et al.  A blend of small molecules regulates both mating and development in Caenorhabditis elegans , 2008, Nature.

[45]  S. W. Emmons,et al.  Mate Searching in Caenorhabditis elegans: A Genetic Model for Sex Drive in a Simple Invertebrate , 2004, The Journal of Neuroscience.

[46]  Denise S Walker,et al.  Dissection of the promoter region of the inositol 1,4,5-trisphosphate receptor gene, itr-1, in C. elegans: a molecular basis for cell-specific expression of IP3R isoforms. , 2001, Journal of molecular biology.

[47]  Thomas R Bürglin,et al.  Comprehensive analysis of gene expression patterns of hedgehog-related genes , 2006, BMC Genomics.

[48]  S. W. Emmons,et al.  PDF-1 neuropeptide signaling modulates a neural circuit for mate-searching behavior in C. elegans , 2012, Nature Neuroscience.

[49]  D. Logan,et al.  Sexual dimorphism in olfactory signaling , 2010, Current Opinion in Neurobiology.

[50]  S. Shaham,et al.  The Glia of Caenorhabditis elegans , 2011, Glia.

[51]  Shai Shaham,et al.  DEX-1 and DYF-7 Establish Sensory Dendrite Length by Anchoring Dendritic Tips during Cell Migration , 2009, Cell.

[52]  Scott W. Emmons,et al.  Sensory Regulation of C. elegans Male Mate-Searching Behavior , 2008, Current Biology.

[53]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[54]  D L Riddle,et al.  Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. , 2003, Cold Spring Harbor symposia on quantitative biology.

[55]  L. Garcia,et al.  Male mating behavior. , 2006, WormBook : the online review of C. elegans biology.

[56]  Elizabeth J. Rideout,et al.  Control of Sexual Differentiation and Behavior by the doublesex gene in Drosophila melanogaster , 2010, Nature Neuroscience.

[57]  A. Arnold,et al.  Developmental plasticity in neural circuits controlling birdsong: sexual differentiation and the neural basis of learning. , 1992, Journal of neurobiology.

[58]  Todd R. Gruninger,et al.  Integration of Male Mating and Feeding Behaviors in Caenorhabditis elegans , 2006, The Journal of Neuroscience.

[59]  A. Cardona,et al.  Elastic volume reconstruction from series of ultra-thin microscopy sections , 2012, Nature Methods.

[60]  J. Hodgkin A genetic analysis of the sex-determining gene, tra-1, in the nematode Caenorhabditis elegans. , 1987, Genes & development.

[61]  V. Rottiers,et al.  A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. , 2001, Developmental cell.

[62]  V. Ambros,et al.  Developmental regulation of a cyclin-dependent kinase inhibitor controls postembryonic cell cycle progression in Caenorhabditis elegans. , 1998, Development.

[63]  Oliver Hobert,et al.  Modular Control of Glutamatergic Neuronal Identity in C. elegans by Distinct Homeodomain Proteins , 2013, Cell.

[64]  R. Waterston,et al.  mls-2 and vab-3 control glia development, hlh-17/Olig expression and glia-dependent neurite extension in C. elegans , 2008, Development.

[65]  D. Zarkower Somatic sex determination. , 2006, WormBook : the online review of C. elegans biology.

[66]  Johannes E. Schindelin,et al.  TrakEM2 Software for Neural Circuit Reconstruction , 2012, PloS one.

[67]  Richard Axel,et al.  A dimorphic pheromone circuit in Drosophila from sensory input to descending output , 2010, Nature.

[68]  I. Greenwald,et al.  A Caenorhabditis elegans model for epithelial–neuronal transdifferentiation , 2008, Proceedings of the National Academy of Sciences.

[69]  M. Yamamoto,et al.  Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. , 2001, The Journal of experimental biology.