Numerical Model: Simplified Strategies for Vulnerability Seismic Assessment of Existing Structures
暂无分享,去创建一个
[1] J. Mazars,et al. Using multifiber beams to account for shear and torsion: Applications to concrete structural elements , 2006 .
[2] Manolis Papadrakakis,et al. A 3D fibre beam-column element with shear modelling for the inelastic analysis of steel structures , 2010 .
[3] R. Nova,et al. Settlements of shallow foundations on sand , 1991 .
[4] Pierre Pegon,et al. Application of the local-to-global approach to the study of infilled frame structures under seismic loading , 2000 .
[5] Panagiotis Kotronis,et al. A new modelling strategy for the behaviour of shear walls under dynamic loading , 2002 .
[6] Sashi K. Kunnath,et al. Adaptive Modal Combination Procedure for Nonlinear Static Analysis of Building Structures , 2006 .
[7] Michael P. Collins,et al. TOWARDS A RATIONAL THEORY FOR RC MEMBERS IN SHEAR , 1978 .
[8] Cédric Desprez. Analyse et Réduction de la Vulnérabilité Sismique des Structures Existantes : Renforcement par Collage de Tissus de Fibres de Carbone (TFC) , 2010 .
[9] E. Absi. LA THEORIE DES EQUIVALENCES ET SON APPLICATION A L'ETUDE DES OUVRAGES D'ART. , 1972 .
[10] Alain Pecker,et al. A macroelement formulation for shallow foundations on cohesive and frictional soils , 2011 .
[11] Panagiotis Kotronis,et al. Damage model for FRP-confined concrete columns under cyclic loading , 2013 .
[12] Wael W. El-Dakhakhni,et al. THREE-STRUT MODEL FOR CONCRETE MASONRY-INFILLED STEEL FRAMES , 2003 .
[13] Jacky Mazars,et al. Numerical modelling for earthquake engineering: the case of lightly RC structural walls , 2004 .
[14] Panagiotis Kotronis,et al. A macro-element to simulate dynamic Soil-Structure Interaction , 2009 .
[15] W. Ritter,et al. Die Bauweise Hennebique , 1904 .
[16] Panagiotis Kotronis,et al. A macro-element for a shallow foundation to simulate Soil–Structure Interaction considering uplift , 2008 .
[17] Nicolae Ile,et al. NONLINEAR ANALYSIS OF REINFORCED CONCRETE SHEAR WALL UNDER EARTHQUAKE LOADING , 2000 .
[18] Guido Gottardi,et al. Plastic response of circular footings on sand under general planar loading , 1999 .
[19] Panagiotis Kotronis,et al. Full‐scale dynamic response of an RC building under weak seismic motions using earthquake recordings, ambient vibrations and modelling , 2007, 0710.1205.
[20] T. Hsu. SOFTENED TRUSS MODEL THEORY FOR SHEAR AND TORSION , 1988 .
[21] Rui Pinho,et al. ADVANTAGES AND LIMITATIONS OF ADAPTIVE AND NON-ADAPTIVE FORCE-BASED PUSHOVER PROCEDURES , 2004 .
[22] Paola Ceresa,et al. Flexure-Shear Fiber Beam-Column Elements for Modeling Frame Structures Under Seismic Loading — State of the Art , 2007 .
[23] Panagiotis Kotronis,et al. Stratégies de Modélisation de Structures en Béton Soumises à des Chargements Sévères , 2008 .
[24] B. S. Smith,et al. Lateral Stiffness of Infilled Frames , 1962 .
[25] Panagiotis Kotronis,et al. SIMPLIFIED MODELLING STRATEGIES TO SIMULATE THE DYNAMIC BEHAVIOUR OF R/C WALLS , 2005 .
[26] Alain Pecker,et al. Cyclic macro‐element for soil–structure interaction: material and geometrical non‐linearities , 2001 .
[27] Anil K. Chopra,et al. A modal pushover analysis procedure to estimate seismic demands for unsymmetric‐plan buildings , 2004 .
[28] Charisis Chatzigogos,et al. Macroelement modeling of shallow foundations , 2008, 0802.0425.
[29] René Tinawi,et al. Comportement d'un cadre rempli soumis à un chargement cyclique: modélisation pour une analyse dynamique non linéaire , 1991 .
[30] Enrico Spacone,et al. FIBRE BEAM–COLUMN MODEL FOR NON‐LINEAR ANALYSIS OF R/C FRAMES: PART I. FORMULATION , 1996 .
[31] Alain Pecker,et al. MODELLING OF NONLINEAR DYNAMIC BEHAVIOUR OF A SHALLOW STRIP FOUNDATION WITH MACRO-ELEMENT , 2002 .
[32] Panagiotis Kotronis,et al. A simplified modelling strategy for R/C walls satisfying PS92 and EC8 design , 2005 .
[33] J. Mazars,et al. The equivalent reinforced concrete model for simulating the behavior of walls under dynamic shear loading , 2003 .
[34] Marco Petrangeli,et al. Fiber Element for Cyclic Bending and Shear of RC Structures. I: Theory , 1999 .
[35] Panagiotis Kotronis,et al. A macro-element for a circular foundation to simulate 3D soil–structure interaction , 2008 .
[36] Cécile Cornou,et al. Calibrating Median and Uncertainty Estimates for a Practical Use of Empirical Green’s Functions Technique , 2008 .
[37] J. L. Dawe,et al. Behaviour of masonry infilled steel frames , 1989 .
[38] Panagiotis Kotronis,et al. The effects of Soil-Structure Interaction on a reinforced concrete viaduct , 2011 .
[39] Panagiotis Kotronis,et al. A macro-element to simulate 3D soil–structure interaction considering plasticity and uplift , 2009 .
[40] P. Mouroux,et al. Risk-Ue Project: An Advanced Approach to Earthquake Risk Scenarios With Application to Different European Towns , 2008 .
[41] J. Gamond,et al. The Belledonne Border Fault: identification of an active seismic strike‐slip fault in the western Alps , 2003 .
[42] Panagiotis Kotronis,et al. Numerical modelling of the seismic behaviour of a 7-story building: NEES benchmark , 2009 .