Unravelling the Role of O-glycans in Influenza A Virus Infection

[1]  M. Menéndez,et al.  Structure and Sialyllactose Binding of the Carboxy-Terminal Head Domain of the Fibre from a Siadenovirus, Turkey Adenovirus 3 , 2015, PloS one.

[2]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[3]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[4]  Xi Chen,et al.  Efficient chemoenzymatic synthesis of novel galacto-N-biose derivatives and their sialylated forms. , 2015, Chemical communications.

[5]  L. Hartley-Tassell,et al.  Ferrets exclusively synthesize Neu5Ac and express naturally humanized influenza A virus receptors , 2014, Nature Communications.

[6]  G. Air,et al.  Glycomic Characterization of Respiratory Tract Tissues of Ferrets , 2014, The Journal of Biological Chemistry.

[7]  N. Karlsson,et al.  Avian influenza H5 hemagglutinin binds with high avidity to sialic acid on different O-linked core structures on mucin-type fusion proteins , 2014, Glycoconjugate Journal.

[8]  J. Skehel,et al.  Recognition of sulphated and fucosylated receptor sialosides by A/Vietnam/1194/2004 (H5N1) influenza virus. , 2013, Virus research.

[9]  J. Peiris,et al.  Investigation of the binding and cleavage characteristics of N1 neuraminidases from avian, seasonal, and pandemic influenza viruses using saturation transfer difference nuclear magnetic resonance , 2013, Influenza and other respiratory viruses.

[10]  J. Jiménez-Barbero,et al.  Carbohydrate-aromatic interactions. , 2013, Accounts of chemical research.

[11]  G. Air,et al.  Glycomic Analysis of Human Respiratory Tract Tissues and Correlation with Influenza Virus Infection , 2013, PLoS pathogens.

[12]  Lijun Rong,et al.  Characterization of Influenza Hemagglutinin Interactions with Receptor by NMR , 2012, PloS one.

[13]  Ryan McBride,et al.  Recognition of sialylated poly-N-acetyllactosamine chains on N- and O-linked glycans by human and avian influenza A virus hemagglutinins. , 2012, Angewandte Chemie.

[14]  J. Fox,et al.  Decoding the Distribution of Glycan Receptors for Human-Adapted Influenza A Viruses in Ferret Respiratory Tract , 2012, PloS one.

[15]  Emi Suenaga,et al.  Monitoring influenza hemagglutinin and glycan interactions using surface plasmon resonance. , 2012, Biosensors & bioelectronics.

[16]  C. Davis,et al.  In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. , 2012, Virology.

[17]  I. Wilson,et al.  Structural Characterization of the Hemagglutinin Receptor Specificity from the 2009 H1N1 Influenza Pandemic , 2011, Journal of Virology.

[18]  David F. Smith,et al.  Analysis of Influenza Virus Hemagglutinin Receptor Binding Mutants with Limited Receptor Recognition Properties and Conditional Replication Characteristics , 2011, Journal of Virology.

[19]  Yan Liu,et al.  Altered Receptor Specificity and Cell Tropism of D222G Hemagglutinin Mutants Isolated from Fatal Cases of Pandemic A(H1N1) 2009 Influenza Virus , 2010, Journal of Virology.

[20]  H. Achdout,et al.  NKp46 O-Glycan Sequences That Are Involved in the Interaction with Hemagglutinin Type 1 of Influenza Virus , 2010, Journal of Virology.

[21]  P. Stanley,et al.  Glycomics Profiling of Chinese Hamster Ovary Cell Glycosylation Mutants Reveals N-Glycans of a Novel Size and Complexity* , 2009, The Journal of Biological Chemistry.

[22]  Ten Feizi,et al.  Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray , 2009, Nature Biotechnology.

[23]  Arthur J. Olson,et al.  AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading , 2009, J. Comput. Chem..

[24]  Z. Zhou,et al.  Influenza virus morphogenesis and budding , 2009, Virus Research.

[25]  B. Meyer,et al.  Binding Epitopes of Gangliosides to their Neuronal Receptor, Myelin‐Associated Glycoprotein, from Saturation Transfer Difference NMR , 2008, Chembiochem : a European journal of chemical biology.

[26]  O. Schwardt,et al.  Consistent Bioactive Conformation of the Neu5Acα(2→3)Gal Epitope Upon Lectin Binding , 2008, Chembiochem : a European journal of chemical biology.

[27]  V. Korolik,et al.  Mucins in the mucosal barrier to infection , 2008, Mucosal Immunology.

[28]  Karl Nicholas Kirschner,et al.  GLYCAM06: A generalizable biomolecular force field. Carbohydrates , 2008, J. Comput. Chem..

[29]  N. Krishna,et al.  NMR experiments reveal the molecular basis of receptor recognition by a calicivirus. , 2008, Journal of the American Chemical Society.

[30]  J. Nicholls,et al.  Avian influenza H5-containing virus-like particles (VLPs): host-cell receptor specificity by STD NMR spectroscopy. , 2008, Angewandte Chemie.

[31]  H. Kunz,et al.  Saccharide-induced peptide conformation in glycopeptides of the recognition region of LI-cadherin. , 2007, Angewandte Chemie.

[32]  H. Klenk,et al.  New low-viscosity overlay medium for viral plaque assays , 2006, Virology Journal.

[33]  Ian A. Wilson,et al.  Structure and Receptor Specificity of the Hemagglutinin from an H5N1 Influenza Virus , 2006, Science.

[34]  James C Paulson,et al.  Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. , 2006, Journal of molecular biology.

[35]  N. Bovin,et al.  Search for additional influenza virus to cell interactions , 2006, Glycoconjugate Journal.

[36]  Nicolai Bovin,et al.  Receptor specificity of influenza viruses from birds and mammals: new data on involvement of the inner fragments of the carbohydrate chain. , 2005, Virology.

[37]  G. Whittaker,et al.  Influenza virus entry and infection require host cell N-linked glycoprotein , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Kihlberg,et al.  Role of the Human ST6GalNAc-I and ST6GalNAc-II in the Synthesis of the Cancer-Associated Sialyl-Tn Antigen , 2004, Cancer Research.

[39]  Thomas Peters,et al.  NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. , 2003, Angewandte Chemie.

[40]  D. Blaas,et al.  Virus-ligand interactions: identification and characterization of ligand binding by NMR spectroscopy. , 2003, Journal of the American Chemical Society.

[41]  Katsuhiko Suzuki,et al.  CHEMOENZYMATIC SYNTHESIS OF NeuAcα-(2→3)-Galβ-(1→3)-[NeuAcα-(2→6)]-GalNAcα1- O-(Z)-Serine (N-PROTECTED MUC II OLIGOSACCHARIDE–SERINE) , 2002 .

[42]  R. Cummings,et al.  Cloning and Expression of Human Core 1 β1,3-Galactosyltransferase* , 2002, The Journal of Biological Chemistry.

[43]  B. Samyn-Petit,et al.  Molecular cloning and functional expression of human ST6GalNAc II. Molecular expression in various human cultured cells. , 2000, Biochimica et biophysica acta.

[44]  Y. Ikehara,et al.  Cloning and expression of a human gene encoding an N-acetylgalactosamine-alpha2,6-sialyltransferase (ST6GalNAc I): a candidate for synthesis of cancer-associated sialyl-Tn antigens. , 1999, Glycobiology.

[45]  H. Kitagawa,et al.  Differential expression of five sialyltransferase genes in human tissues. , 1994, The Journal of biological chemistry.

[46]  T. Kawasaki,et al.  Purification and characterization of UDP-GalNAc:polypeptide N-acetylgalactosamine transferase from an ascites hepatoma, AH 66. , 1982, The Journal of biological chemistry.

[47]  A. Srinivasan,et al.  Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin , 2008, Nature Biotechnology.