Advances on Rain Rate Retrieval from Satellite Platforms using Artificial Neural Networks

In the last two decades, great advances have been related with the development of rain rate retrieval algorithms using artificial neural networks, in order to exploit satellite data capabilities. The enhancement of computing processing capacity available from modern computers has impulsed a long number of researches aimed to generate more accurate and faster algorithms. This work deals with how the implementation of new trends in artificial neural networks and the spectral resolution improvement of spaceborne sensors have influenced in the design of retrieval algorithms to estimate rain rate from satellites using artificial neural networks. Recent results have shown an important increasing in accuracy and technical feasibility of implementation, however, the feasibility to use artificial neural networks to estimate rain rate in real time, using remote sensing techniques, is a research issue yet.

[1]  V. Levizzani,et al.  Quantitative Precipitation Estimation from Earth Observation Satellites , 2013 .

[2]  P. Basili,et al.  Rain retrieval algorithms for passive microwave observations: a comparison and a choice , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[3]  B. Petrenko,et al.  Low-dimensional parameterization of the Kummerow's microwave radiative transfer model for the atmosphere with precipitation , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[4]  S. Sorooshian,et al.  Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks , 1997 .

[5]  D. Rumelhart,et al.  Predicting sunspots and exchange rates with connectionist networks , 1991 .

[6]  David H. Staelin,et al.  Global Millimeter-Wave Precipitation Retrievals Trained With a Cloud-Resolving Numerical Weather Prediction Model, Part I: Retrieval Design , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Kuolin Hsu,et al.  Neural networks in satellite rainfall estimation , 2004 .

[8]  B. N. Meisner,et al.  The Relationship between Large-Scale Convective Rainfall and Cold Cloud over the Western Hemisphere during 1982-84 , 1987 .

[9]  Chris Kidd,et al.  Satellite rainfall climatology: a review , 2001 .

[10]  Claudia Emde,et al.  A 3-D polarized reversed Monte Carlo radiative transfer model for Millimeter and submillimeter passive remote sensing in cloudy atmospheres , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[11]  David M. Skapura,et al.  Building neural networks , 1995 .

[12]  William J. Blackwell,et al.  Neural network microwave precipitation retrievals and modeling results , 2008, Asia-Pacific Remote Sensing.

[13]  F. Marzano,et al.  Artificial neural-network technique for precipitation nowcasting from satellite imagery , 2006 .

[14]  J. Milford,et al.  Rainfall estimation from cold cloud duration : experience of the TAMSAT group in West Africa , 1996 .

[15]  V. Levizzani,et al.  Status of satellite precipitation retrievals , 2009 .

[16]  R. S. Scorer,et al.  Cloud reflectance variations in channel-3 , 1989 .

[17]  Shaun Lovejoy,et al.  The delineation of rain areas from visible and IR satellite data for GATE and mid‐latitudes , 1979 .

[18]  Ning Lu,et al.  Shortwave radiative forcing of clouds and aerosols over China from 1998 to 2002 , 2010, 2010 18th International Conference on Geoinformatics.

[19]  Emmanouil N. Anagnostou,et al.  A neural network approach to estimating rainfall from spaceborne microwave data , 1997, IEEE Trans. Geosci. Remote. Sens..

[20]  Y. Hong,et al.  Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System , 2004 .

[21]  Y. Yung,et al.  Atmospheric Radiation: Theoretical Basis , 1989 .

[22]  Cesar Seijas,et al.  Análisis Comparativo de Ajuste en Entrenamiento de Redes Neuronales artificiales a partir de las Librerías Open NN y ALGLIB , 2015 .

[23]  Catherine Prigent,et al.  Precipitation retrieval from space: An overview , 2010 .

[24]  E. C. Barrett,et al.  Satellite rainfall monitoring: An overview , 1994 .

[25]  David H. Staelin,et al.  Global Millimeter-Wave Precipitation Retrievals Trained With A Cloud-Resolving Numerical Weather-Prediction Model, Part II: Performance Evaluation , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[26]  V. Levizzani,et al.  Validation of Satellite-Based Precipitation Products over Sparsely Gauged African River Basins , 2012 .

[27]  Guosheng Liu SATELLITE REMOTE SENSING | Precipitation , 2003 .

[28]  Chris Kidd,et al.  Rainfall Estimation from a Combination of TRMM Precipitation Radar and GOES Multispectral Satellite Imagery through the Use of an Artificial Neural Network , 2000 .

[29]  Jinzheng Peng,et al.  Global Simplified Atmospheric Radiative Transfer Model at L-Band , 2013, IEEE Geoscience and Remote Sensing Letters.

[30]  Christian Kummerow,et al.  A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors , 1996, IEEE Trans. Geosci. Remote. Sens..

[31]  Christian D. Kummerow,et al.  A method for combining passive microwave and infrared rainfall observations , 1995 .

[32]  Frank S. Marzano,et al.  Satellite radiometric remote sensing of rainfall fields: multi-sensor retrieval techniques at geostationary scale , 2005 .

[33]  E. Barrett Satellite rainfall monitoring: recent progress and remaining problems , 1997 .

[34]  David H. Staelin,et al.  Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite , 2000, IEEE Trans. Geosci. Remote. Sens..

[35]  Eric A. Smith,et al.  Intercomparison of microwave radiative transfer models for precipitating clouds , 2002, IEEE Trans. Geosci. Remote. Sens..

[36]  Vincenzo Levizzani,et al.  The 183-WSL fast rain rate retrieval algorithm: Part I: Retrieval design , 2011 .

[37]  William J. Blackwell,et al.  Neural Network Applications in High-Resolution Atmospheric Remote Sensing , 2005 .

[38]  G. Visconti,et al.  A Neural Network Approach to Real-Time Rainfall Estimation for Africa Using Satellite Data , 2003 .