The CartACom model: transforming cartographic features into communicating agents for cartographic generalisation

Our research is concerned with automated generalisation of topographic vector databases in order to produce maps. This article presents a new, agent-based generalisation model called CartACom (Cartographic generalisation with Communicating Agents), dedicated to the treatment of areas of low density but where rubber sheeting techniques are not sufficient because some eliminations or aggregations are needed. In CartACom, the objects of the initial database are modelled as agents, that is, autonomous entities, that choose and apply generalisation algorithms to themselves in order to increase the satisfaction of their constraints as much as possible. The CartACom model focuses on modelling and treating the relational constraints, defined as constraints that concern a relation between two objects. In order to detect and assess their relational constraints, the CartACom agents are able to perceive their spatial surroundings. Moreover, to make the good generalisation decisions to satisfy their relational constraints, they are able to communicate with their neighbours using predefined dialogue protocols. Finally, a hook to another agent-based generalisation model – AGENT – is provided, so that the CartACom agents can handle not only their relational constraints but also their internal constraints. The CartACom model has been applied to the generalisation of low-density, heterogeneous areas like rural areas, where the space is not hierarchically organised. Examples of results obtained on real data show that it is well adapted for this application.

[1]  Thomas Meurisse,et al.  Architectural Design of Component-Based Agents: A Behavior-Based Approach , 2006, PROMAS.

[2]  N. Regnauld,et al.  A synoptic View of Generalisation Operators , 2007 .

[3]  Mathieu Barrault,et al.  Road network generalization: A multi AGENT system approach , 2001 .

[4]  Mark S. Fox,et al.  COOL: A Language for Describing Coordination in Multi Agent Systems , 1995, ICMAS.

[5]  Robert Weibel,et al.  Modelling the Overall Process of Generalisation , 2007 .

[6]  Tapani Sarjakoski,et al.  Simultaneous Graphic Generalization of Vector Data Sets , 2002, GeoInformatica.

[7]  Yannis Labrou,et al.  Standardizing Agent Communication , 2001, EASSS.

[8]  Cécile Duchêne,et al.  The CartACom model : a generalisation model for taking relational constraints into account , 2004 .

[9]  Monika Sester,et al.  Optimization approaches for generalization and data abstraction , 2005, Int. J. Geogr. Inf. Sci..

[10]  Christopher B. Jones,et al.  Conflict Reduction in Map Generalization Using Iterative Improvement , 1998, GeoInformatica.

[11]  Khaled Ghédira,et al.  A Distributed Approach to Partial Constraint Satisfaction Problems , 1994, MAAMAW.

[12]  R. McMaster,et al.  Map Generalization: Making Rules for Knowledge Representation , 1991 .

[13]  C. Duchêne,et al.  CollaGen: Collaboration between automatic cartographic Generalisation Processes , 2011 .

[14]  Amal El Fallah-Seghrouchni,et al.  Les systèmes multi-agents , 2006 .

[15]  Anne Ruas,et al.  Modelling the Overall Process of Generalisation , 2013 .

[16]  Julie A. Adams,et al.  Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence , 2001, AI Mag..

[17]  W. Mackaness,et al.  The application of agents in automated map generalization , 1999 .

[18]  Csr Young,et al.  How to Do Things With Words , 2009 .

[19]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[20]  Gerhard Weiss,et al.  Multi-Agent Systems , 2013 .

[21]  Patrick Taillandier,et al.  Automatic revision of rules used to guide the generalisation process in systems based on a trial and error strategy , 2011, Int. J. Geogr. Inf. Sci..

[22]  C. Duchêne AUTOMATED MAP GENERALISATION USING COMMUNICATING AGENTS , 2003 .

[23]  Guillaume Touya,et al.  Emergence de zones conflits dans deux modèles de généralisation cartographique multi-agents , 2010, JFSMA.

[24]  A. Ruas Modèle de généralisation de données géographiques à base de contraintes et d'autonomie , 1999 .

[25]  P. Højholt Solving Space Conflicts in Map Generalization: Using a Finite Element Method , 2000 .

[26]  K. S. Shea,et al.  Cartographic generalization in a digital environment: a framework for implementation in a geographic information system , 1988 .

[27]  Robert Weibel,et al.  A review and conceptual framework of automated map generalization , 1988, Int. J. Geogr. Inf. Sci..

[28]  J. Sadock Speech acts , 2007 .

[29]  Lars Harrie,et al.  The Constraint Method for Solving Spatial Conflicts in Cartographic Generalization , 1999 .

[30]  Robert Weibel,et al.  Integrating multi agent, object oriented and algorithmic techniques for improved automoated map generalisation , 2001 .

[31]  Cécile Duchêne,et al.  Généralisation cartographique par agents communicants : le modèle cartacom : application aux données topographiques en zone rurale , 2004 .

[32]  Julien Gaffuri,et al.  Combining Three Multi-agent Based Generalisation Models: AGENT, CartACom and GAEL , 2008, SDH.

[33]  Gerhard Weiss,et al.  Multiagent Systems , 1999 .

[34]  Anne Ruas,et al.  A Prototype Generalisation System Based on the Multi-Agent System Paradigm , 2007 .

[35]  Michael Luck,et al.  Multi-Agent Systems and Applications , 2001, Lecture Notes in Computer Science.

[36]  Anne Ruas,et al.  Collaborative Generalisation: Formalisation of Generalisation Knowledge to Orchestrate Different Cartographic Generalisation Processes , 2010, GIScience.

[37]  Julien Gaffuri,et al.  Généralisation automatique pour la prise en compte de thèmes champ : le modèle GAEL. (Automated generalisation to take fields into account : the GAEL model) , 2008 .