Measurement of AC magnetic field distribution using magnetic resonance imaging

Electric currents are applied to body in numerous applications in medicine such as electrical impedance tomography, cardiac defibrillation, electrocautery, and physiotherapy. If the magnetic field within a region is measured, the currents generating these fields can be calculated using the curl operator. In this study, magnetic fields generated within a phantom by currents passing through an external wire is measured using a magnetic resonance imaging (MRI) system. A pulse sequence that is originally designed for mapping static magnetic field inhomogeneity is adapted. AC current in the form of a burst sine wave is applied synchronously with the pulse sequence. The frequency of the applied current is in the audio range with an amplitude of 175-mA rms. It is shown that each voxel value of sequential images obtained by the proposed pulse sequence is modulated similar to a single-tone broadband frequency modulated (FM) waveform with the AC magnetic field strength determining the modulation index. An algorithm is developed to calculate the AC magnetic field intensity at each voxel using the frequency spectrum of the voxel signal. Experimental results show that the proposed algorithm can be used to calculate AC magnetic field distribution within a conducting sample that is placed in an MRI system.

[1]  J Hoenninger,et al.  Magnetic resonance imaging: effects of magnetic field strength. , 1984, Radiology.

[2]  Y. Birgül,et al.  Use of the Magnetic Field Generated by the Internal Distribution of Injected Currents for Electrical Impedance Tomography (MR-EIT) , 1998 .

[3]  R. Mark Henkelman,et al.  Electromagnetic considerations for RF current density imaging [MRI technique] , 1995, IEEE Trans. Medical Imaging.

[4]  H. Koymen,et al.  Low cost PC based whole body magnetic resonance imaging system , 1993, Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ.

[5]  O. Birgul,et al.  Electrical impedance tomography using the magnetic field generated by injected currents , 1996, Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[6]  Andrew A. Maudsley,et al.  Magnetic field measurement by NMR imaging , 1984 .

[7]  Simon Haykin,et al.  Communication Systems , 1978 .

[8]  R M Henkelman,et al.  Measurement of nonuniform current density by magnetic resonance. , 1991, IEEE transactions on medical imaging.