Eigenvalue Ratios of Non-Negatively Curved Graphs

We derive an optimal eigenvalue ratio estimate for finite weighted graphs satisfying the curvature-dimension inequality CD (0, ∞). This estimate is independent of the size of the graph and provides a general method to obtain higher-order spectral estimates. The operation of taking Cartesian products is shown to be an efficient way for constructing new weighted graphs satisfying CD (0, ∞). We also discuss a higher-order Cheeger constant-ratio estimate and related topics about expanders.

[1]  Shiu-yuen Cheng,et al.  Eigenvalue comparison theorems and its geometric applications , 1975 .

[2]  J. V. D. Heuvel,et al.  Hamilton cycles and eigenvalues of graphs , 1995 .

[3]  F. Chung,et al.  Eigenvalues and diameters for manifolds and graphs , 1997 .

[4]  Masato Mimura Multi-Way Expanders and Imprimitive Group Actions on Graphs , 2016 .

[5]  P. Buser A note on the isoperimetric constant , 1982 .

[6]  Noga Alon,et al.  Random Cayley Graphs and Expanders , 1994, Random Struct. Algorithms.

[7]  Shing-Tung Yau,et al.  Li-Yau inequality on graphs , 2013, 1306.2561.

[8]  Luca Trevisan,et al.  Improved Cheeger's inequality: analysis of spectral partitioning algorithms through higher order spectral gap , 2013, STOC '13.

[9]  Bojan Mohar,et al.  Eigenvalues, diameter, and mean distance in graphs , 1991, Graphs Comb..

[10]  L. Miclo On eigenfunctions of Markov processes on trees , 2008 .

[11]  Shiping Liu,et al.  Ollivier’s Ricci Curvature, Local Clustering and Curvature-Dimension Inequalities on Graphs , 2011, Discret. Comput. Geom..

[12]  Prasad Tetali,et al.  Concentration of Measure for Products of Markov Kernels and Graph Products via Functional Inequalities , 2001, Combinatorics, Probability and Computing.

[13]  L. Miclo Relations entre isopérimétrie et trou spectral pour les chaînes de Markov finies , 1999 .

[14]  Kei Funano,et al.  Eigenvalues of Laplacian and multi-way isoperimetric constants on weighted Riemannian manifolds , 2013, 1307.3919.

[15]  M. Schmuckenschläger Curvature of Nonlocal Markov Generators , 1998 .

[16]  Mamoru Tanaka Multi-way expansion constants and partitions of a graph , 2011 .

[17]  K. D. Elworthy,et al.  Manifolds and Graphs with Mostly Positive Curvatures , 1991 .

[18]  Yih-Ho Pao,et al.  The Spectral Gap , 1969 .

[19]  Dominique Bakry,et al.  Functional Inequalities for Markov semigroups , 2009 .

[20]  Shiping Liu,et al.  An optimal dimension-free upper bound for eigenvalue ratios , 2014, 1405.2213.

[21]  F. Chung,et al.  Harnack inequalities for graphs with non-negative Ricci curvature , 2012, 1207.6612.

[22]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[23]  Seong-Hun Paeng,et al.  Ollivier's Ricci curvature and the coloring of graphs , 2013, Eur. J. Comb..

[24]  F. Chung,et al.  Logarithmic Harnack Inequalities , 1996 .

[25]  S. Yau,et al.  Surveys in Differential Geometry , 1999 .

[26]  S. Yau,et al.  Ricci curvature and eigenvalue estimate on locally finite graphs , 2010 .

[27]  Guantao Chen,et al.  An Interlacing Result on Normalized Laplacians , 2005, SIAM J. Discret. Math..

[28]  Joel Friedman,et al.  Spectral estimates for Abelian Cayley graphs , 2006, J. Comb. Theory, Ser. B.

[29]  P. Tetali,et al.  Discrete Curvature and Abelian Groups , 2015, Canadian Journal of Mathematics.

[30]  Shiping Liu,et al.  Multi-way dual Cheeger constants and spectral bounds of graphs , 2014, 1401.3147.

[31]  F. Chung Diameters and eigenvalues , 1989 .

[32]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.