Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation

Abstract. The polarimetric bidirectional reflectance distribution function (pBRDF) describes the relationships between incident and scattered Stokes parameters, but the familiar surface-only microfacet pBRDF cannot capture diffuse scattering contributions and depolarization phenomena. We propose a modified pBRDF model with a diffuse scattering component developed from the Kubelka–Munk and Le Hors et al. theories, and apply it in the development of a method to jointly estimate refractive index, slope variance, and diffuse scattering parameters from a series of Stokes parameter measurements of a surface. An application of the model and estimation approach to experimental data published by Priest and Meier shows improved correspondence with measurements of normalized Mueller matrix elements. By converting the Stokes/Mueller calculus formulation of the model to a degree of polarization (DOP) description, the estimation results of the parameters from measured DOP values are found to be consistent with a previous DOP model and results.

[1]  Fei Wang,et al.  Polarization behavior of paints doped with silicone light diffusion agent , 2016 .

[2]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[3]  M. Hyde,et al.  A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces. , 2009, Optics express.

[4]  Dalton Rosario,et al.  Day/Night Polarimetric Anomaly Detection Using SPICE Imagery , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[5]  K. Gross,et al.  Estimating index of refraction from polarimetric hyperspectral imaging measurements. , 2016, Optics express.

[6]  Edwin R. Hancock,et al.  The modified Beckmann-Kirchhoff scattering theory for rough surface analysis , 2007, Pattern Recognit..

[7]  David G. Voelz,et al.  Index of refraction estimation from Stokes parameters with diffuse scattering consideration , 2016, SPIE Commercial + Scientific Sensing and Imaging.

[8]  S. R. Meier,et al.  Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces , 2002 .

[9]  P. Gill,et al.  Algorithms for the Solution of the Nonlinear Least-Squares Problem , 1978 .

[10]  Xifeng Xiao,et al.  Complex index of refraction estimation from degree of polarization with diffuse scattering consideration. , 2015, Applied optics.

[11]  Michael G. Gartley,et al.  Micro-scale surface and contaminate modeling for polarimetric signature prediction , 2008, SPIE Defense + Commercial Sensing.

[12]  Donald P. Greenberg,et al.  A comprehensive physical model for light reflection , 1991, SIGGRAPH.

[13]  J. Koenderink,et al.  Diffuse and specular reflectance from rough surfaces. , 1998, Applied optics.

[14]  R. James,et al.  Polarimetric Remote Sensing in the Visible to Near Infrared , 2005 .

[15]  David G. Voelz,et al.  Polarization-based complex index of refraction estimation with diffuse scattering consideration , 2015, SPIE Optical Engineering + Applications.

[16]  J. E. Harvey,et al.  Modified Beckmann-Kirchhoff scattering model for rough surfaces with large incident and scattering angles , 2007 .

[17]  Sebastien Breugnot,et al.  Phenomenological model of paints for multispectral polarimetric imaging , 2001, SPIE Defense + Commercial Sensing.

[18]  P. Kubelka,et al.  Errata: New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[19]  Shree K. Nayar,et al.  Improved Diffuse Reflection Models for Computer Vision , 1998, International Journal of Computer Vision.

[20]  A. Murphy Modified Kubelka–Munk model for calculation of the reflectance of coatings with optically-rough surfaces , 2006 .

[21]  D. Voelz,et al.  Polarization-based index of refraction and reflection angle estimation for remote sensing applications. , 2007, Applied optics.