Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure

[1]  D. Toomre,et al.  Reticulon 4 Is Necessary for Endoplasmic Reticulum Tubulation, STIM1-Orai1 Coupling, and Store-operated Calcium Entry , 2014, The Journal of Biological Chemistry.

[2]  M. Schwab,et al.  The Sphingolipid Receptor S1PR2 Is a Receptor for Nogo-A Repressing Synaptic Plasticity , 2014, PLoS biology.

[3]  D. Ingber,et al.  Nogo-A is a negative regulator of CNS angiogenesis , 2013, Proceedings of the National Academy of Sciences.

[4]  J. Paul,et al.  Role of serine-threonine phosphoprotein phosphatases in smooth muscle contractility. , 2013, American journal of physiology. Cell physiology.

[5]  S. Rafii,et al.  Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. , 2012, Developmental cell.

[6]  G. Wang,et al.  Angiotensin II–Dependent Hypertension Requires Cyclooxygenase 1–Derived Prostaglandin E2 and EP1 Receptor Signaling in the Subfornical Organ of the Brain , 2012, Hypertension.

[7]  R. Groszmann,et al.  Reticulon 4B (Nogo‐B) is a novel regulator of hepatic fibrosis , 2011, Hepatology.

[8]  A. Dávalos,et al.  Endothelial reticulon-4B (Nogo-B) regulates ICAM-1-mediated leukocyte transmigration and acute inflammation. , 2011, Blood.

[9]  R. Homer,et al.  Epithelial reticulon 4B (Nogo-B) is an endogenous regulator of Th2-driven lung inflammation , 2010, The Journal of experimental medicine.

[10]  A. Haimovitz-Friedman,et al.  Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. , 2010, Cellular signalling.

[11]  A. Barberis,et al.  Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis , 2010, Nature.

[12]  R. Schneiter,et al.  Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control , 2010, Proceedings of the National Academy of Sciences.

[13]  F. Barkhof,et al.  Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. , 2010, The New England journal of medicine.

[14]  L. Kappos,et al.  A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. , 2010, The New England journal of medicine.

[15]  H. Hartung,et al.  Mechanism of Action of Oral Fingolimod (FTY720) in Multiple Sclerosis , 2010, Clinical neuropharmacology.

[16]  Liana C. Silva,et al.  A Critical Role for Ceramide Synthase 2 in Liver Homeostasis , 2010, The Journal of Biological Chemistry.

[17]  Christer S. Ejsing,et al.  Orm family proteins mediate sphingolipid homeostasis , 2010, Nature.

[18]  S. Coughlin,et al.  Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. , 2009, The Journal of clinical investigation.

[19]  F. Pecker,et al.  Sphingomyelinases: their regulation and roles in cardiovascular pathophysiology. , 2009, Cardiovascular Research.

[20]  A. Malik,et al.  Activation of Sphingosine Kinase-1 Reverses the Increase in Lung Vascular Permeability Through Sphingosine-1-Phosphate Receptor Signaling in Endothelial Cells , 2008, Circulation research.

[21]  T. Michel,et al.  S1P and eNOS regulation. , 2008, Biochimica et biophysica acta.

[22]  H. Bonkovsky,et al.  Vascular Endothelium As a Contributor of Plasma Sphingosine 1-Phosphate , 2008, Circulation research.

[23]  N. Bryan,et al.  Methods to detect nitric oxide and its metabolites in biological samples. , 2007, Free radical biology & medicine.

[24]  Gonçalo R. Abecasis,et al.  Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma , 2007, Nature.

[25]  M. Gräler,et al.  Erythrocytes store and release sphingosine 1‐phosphate in blood , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[26]  G. Assmann,et al.  FTY720, a Synthetic Sphingosine 1 Phosphate Analogue, Inhibits Development of Atherosclerosis in Low-Density Lipoprotein Receptor–Deficient Mice , 2007, Circulation.

[27]  H. Kosaka,et al.  Hydrogen peroxide induces S1P1 receptors and sensitizes vascular endothelial cells to sphingosine 1-phosphate, a platelet-derived lipid mediator. , 2006, American journal of physiology. Cell physiology.

[28]  J. Stypmann,et al.  High-Density Lipoproteins and Their Constituent, Sphingosine-1-Phosphate, Directly Protect the Heart Against Ischemia/Reperfusion Injury In Vivo via the S1P3 Lysophospholipid Receptor , 2006, Circulation.

[29]  S. Strittmatter,et al.  Identification of a receptor necessary for Nogo-B stimulated chemotaxis and morphogenesis of endothelial cells. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[30]  K. Reynolds,et al.  Global burden of hypertension: analysis of worldwide data , 2005, The Lancet.

[31]  S. Strittmatter,et al.  A new role for Nogo as a regulator of vascular remodeling , 2004, Nature Medicine.

[32]  R. Karas,et al.  Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure , 2003, Nature Medicine.

[33]  S. Spiegel,et al.  Sphingosine Kinase Modulates Microvascular Tone and Myogenic Responses Through Activation of RhoA/Rho Kinase , 2003, Circulation.

[34]  T. Michel,et al.  Sphingosine 1-phosphate and control of vascular tone. , 2003, American journal of physiology. Heart and circulatory physiology.

[35]  M. Moskowitz,et al.  S1P3 receptors mediate the potent constriction of cerebral arteries by sphingosine-1-phosphate. , 2003, European journal of pharmacology.

[36]  O. Steward,et al.  Lack of Enhanced Spinal Regeneration in Nogo-Deficient Mice , 2003, Neuron.

[37]  S. Strittmatter,et al.  Axon Regeneration in Young Adult Mice Lacking Nogo-A/B , 2003, Neuron.

[38]  G. Nixon,et al.  Comparison of Sphingosine 1-Phosphate–Induced Intracellular Signaling Pathways in Vascular Smooth Muscles: Differential Role in Vasoconstriction , 2002, Circulation research.

[39]  D. Yamamoto,et al.  Zebrafish yolk‐specific not really started (nrs) gene is a vertebrate homolog of the Drosophila spinster gene and is essential for embryogenesis , 2002, Developmental dynamics : an official publication of the American Association of Anatomists.

[40]  K. Hirata,et al.  Involvement of Endothelial Nitric Oxide in Sphingosine‐1‐Phosphate‐Induced Angiogenesis , 2002, Arteriosclerosis, thrombosis, and vascular biology.

[41]  T. Michel,et al.  Agonist-modulated Targeting of the EDG-1 Receptor to Plasmalemmal Caveolae , 2000, The Journal of Biological Chemistry.

[42]  T. Fujita,et al.  Specificity of inhibitors of serine palmitoyltransferase (SPT), a key enzyme in sphingolipid biosynthesis, in intact cells. A novel evaluation system using an SPT-defective mammalian cell mutant. , 2000, Biochemical pharmacology.

[43]  L. Puybasset,et al.  Chronic inhibition of NO synthase enhances the production of prostacyclin in coronary arteries through upregulation of the cyclooxygenase type 1 isoform , 1997, Fundamental & clinical pharmacology.

[44]  Y. Hannun Functions of Ceramide in Coordinating Cellular Responses to Stress , 1996, Science.

[45]  L. Ghiadoni,et al.  Defective L-arginine-nitric oxide pathway in offspring of essential hypertensive patients. , 1996, Circulation.

[46]  J. Swales Clinical trials: what more is needed? A critical view , 1996, Journal of hypertension. Supplement : official journal of the International Society of Hypertension.

[47]  D. Harrison,et al.  Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. , 1996, The Journal of clinical investigation.

[48]  M. Moskowitz,et al.  Hypertension in mice lacking the gene for endothelial nitric oxide synthase , 1995, Nature.

[49]  P. Davies,et al.  Flow-mediated endothelial mechanotransduction. , 1995, Physiological reviews.

[50]  T. Wascher,et al.  Endothelial dysfunction in hypertension , 1994, The Lancet.

[51]  R. Lester,et al.  The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[52]  D. Webb,et al.  L-NMMA Increases blood pressure in man , 1993, The Lancet.

[53]  M. Kiso,et al.  Sphingolipids are essential for the growth of Chinese hamster ovary cells. Restoration of the growth of a mutant defective in sphingoid base biosynthesis by exogenous sphingolipids. , 1992, The Journal of biological chemistry.

[54]  J. K. Lloyd,et al.  Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis , 1992, The Lancet.

[55]  O. Griffith,et al.  NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo? , 1989, Biochemical and biophysical research communications.

[56]  M. Brody,et al.  Vasoconstrictor hyperresponsiveness: an early pathogenic mechanism in the spontaneously hypertensive rat. , 1978, European journal of pharmacology.

[57]  W. J. Dyer,et al.  A rapid method of total lipid extraction and purification. , 1959, Canadian journal of biochemistry and physiology.

[58]  I. Goldberg,et al.  Sphingolipids and cardiovascular diseases: lipoprotein metabolism, atherosclerosis and cardiomyopathy. , 2011, Advances in experimental medicine and biology.

[59]  T. Hla,et al.  Sphingosine 1-phosphate in coagulation and inflammation , 2011, Seminars in Immunopathology.

[60]  A. Bielawska,et al.  Sphingolipid analysis by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). , 2010, Advances in experimental medicine and biology.

[61]  N. de Las Heras,et al.  [Endothelial dysfunction in hypertension]. , 2003, Nefrologia : publicacion oficial de la Sociedad Espanola Nefrologia.

[62]  K. Hirata,et al.  Involvement of Endothelial Nitric Oxide in Sphingosine-1-Phosphate–Induced Angiogenesis , 2001 .

[63]  A. Salvetti,et al.  Pathogenetic factors in hypertension. Endothelial factors. , 1996, Clinical and experimental hypertension.

[64]  J. Bevan,et al.  Pharmacological implications of the flow-dependence of vascular smooth muscle tone. , 1994, Annual review of pharmacology and toxicology.

[65]  R. D. Williams,et al.  Enzymology of long-chain base synthesis by liver: characterization of serine palmitoyltransferase in rat liver microsomes. , 1984, Archives of biochemistry and biophysics.